'

The Ethics of Algorithms: When Your Code Can Harm Others

Понравилась презентация – покажи это...





Слайд 0

CONSEQUENCES OF AN INSIGHTFUL ALGORITHM CARINA C. ZONA @CCZONA


Слайд 1

grieving surveillance PTSD racial profiling
 depression
 
 
 
 
 ENT W C
 O N T 
 G ARNIN 
 
 
 sexual history miscarriage consent infertility
 assault


Слайд 2

ALGORITHMS IMPOSE CONSEQUENCES ON PEOPLE ALL THE TIME


Слайд 3

ALGORITHM S T E P - B Y- S T E P S E T O F 
 O P E R AT I O N S F O R 
 P R E D I C TA B LY A R R I V I N G AT AN OUTCOME


Слайд 4

ALGORITHMS OF COMPUTER SCIENCE & MATHEMATICS PAT T E R N S O F I N S T R U C T I O N S , A R T I C U L AT E D I N C O D E O R F O R M U L A S


Слайд 5

ALGORITHMS IN ORDINARY LIFE PAT T E R N S O F I N S T R U C T I O N S , A R T I C U L AT E D I N W AY S S U C H A S …


Слайд 6


Слайд 7


Слайд 8

Ch 12, sl st to join. Rnd 1: ch 3, 17 dc. Rnd 2: ch 3, 1 dc, ch 4, skip 1 dc, *2 dc, ch 4, skip 1 dc*, repeat 5 times, sl st. Rnd 3: ch 3, 2 dc, ch 5, skip 2 ch and 1 dc, *3 dc, ch 5, skip 2 ch and 1 dc*, repeat 5 times, sl st. Rnd 4: ch 3, 3 dc, ch 5, skip 3 ch and 1 dc, *4 dc, ch 5, skip 3 ch and 1 dc*, repeat 5 times, sl st. Rnd 5: ch 3, 4 dc, ch 6, skip 3 ch and 1 dc, *5 dc, ch 6, skip 3 ch and 1 dc*, repeat 5 times, sl st. Rnd 6: ch 3, 6 dc, ch 6, skip 3 ch and 1 dc, *7 dc, ch 6, skip 3 ch and 1 dc*, repeat 5 times, sl st. Rnd 7: ch 3, 8 dc, ch 6, skip 3 ch and 1 dc, *9 dc, ch 6, skip 3 ch and 1 dc*, repeat 5 times, sl st. Rnd 8: ch 3, 10 dc, ch 6, skip 3 ch and 1 dc, *11 dc, ch 6, skip 3 ch and 1 dc*, repeat 5 times, sl st .Rnd 9: ch 3, 12 dc, ch 6, skip 3 ch and 1 dc, *13 dc, ch 6, skip 3 ch and 1 dc*, repeat 5 times, sl st. Rnd 10: ch 3, 14 dc, ch 7, skip 3 ch and 1 dc, *15 dc, ch 7, skip 3 ch and 1 dc*, repeat 5 times, sl st. Rnd 11: ch 3, 16 dc, ch 7, skip 4 ch and 1 dc, *17 dc, ch 7, skip 4 ch and 1 dc*, repeat 5 times, sl st. Rnd 12: ch 3, 18 dc, ch 8, skip 4 ch and 1 dc, *19 dc, ch 8, skip 4 ch and 1 dc*, repeat 5 times, sl st. Rnd 13: ch 3, 20 dc, ch 8, skip 5 ch and 1 dc, *21 dc, ch 8, skip 5 ch and 1 dc*, repeat 5 times, sl st. Rnd 14: ch 3, 16 dc, ch 8, skip 3 dc and 2 ch, 1 dc, ch 8, skip 1 dc, *17 dc, ch 8, skip 3 dc and 2 ch, 1 dc, ch 8, skip 1 dc,* repeat 5 times, sl st.


Слайд 9

DEEP LEARNING A L G O R I T H M S F O R F A S T, TRAINABLE, ARTIFICIAL NEURAL NETWORKS


Слайд 10

"DEEP LEARNING IS A PA R T I C U L A R A P P R O A C H T O BUILDING & TRAINING ARTIFICIAL NEURAL NETWORKS. THINK OF THEM AS DECISIONMAKING BLACK BOXES." – P e t e Wa rd e n , " W h a t i s d e e p l e a r n i n g , a n d w h y s h o u l d y o u c a re ? " @CCZONA


Слайд 11

INPUT Array of numbers representing 
 words, concepts, or objects. EXECUTION Run a series of functions 
 o n t h e a r r a y. OUTPUT Prediction of properties useful for drawing intuitions about similar inputs. @CCZONA


Слайд 12

INPUT Array of 
 numbers representing 
 words, concepts, or objects EXECUTION Run a series of functions 
 on the array OUTPUT Prediction of 
 properties useful for 
 drawing intuitions about 
 similar inputs


Слайд 13

Deep Learning relies on an artificial neural network's automated discovery of patterns within its training dataset. It applies those discoveries to draw intuitions about future inputs. @CCZONA


Слайд 14


Слайд 15


Слайд 16

WOULD Y OU LIKE T O P L AY A N I C E G A M E O F D AT A M I N I N G F A I L ?


Слайд 17

# D AT A M I N I N G F A I L Algorithmic Profiling DeAnonymization Disparate Impact Consent Issues Unproven Methods Inadvertent Algorithmic Cruelty Deception Filtering No Recourse Creepy Stalkery Messing With Heads Accurate, But Not Right Shaming Diversity Fail Black Box Personally Human Replicates Bias Identifiable Info Complexity Fail Uncritical Assumptions Moved Fast, Broke Things High Risk False Neutrality Consequences Invasion Of Privacy Not How Valid Data Insecurity Research Works


Слайд 18

TA R G E T


Слайд 19


Слайд 20

S H U T T E R F LY


Слайд 21


Слайд 22

“ T h a n k s , S h u t t e r f l y, f o r the congratulations 
 on my 'new bundle of joy'. I'm horribly infertile,
 b u t h e y, 
 I'm adopting 
 a kitten, so...” @CCZONA


Слайд 23

"I lost a baby in November who would have been due this week.
 It was like hitting a wall all over again." @CCZONA


Слайд 24

“THE INTENT OF THE E M A I L W A S T O TA R G E T CUSTOMERS WHO H A V E R E C E N T LY HAD A BABY" @CCZONA


Слайд 25

" Yo u s t a r t i m a g i n i n g w h o 
 they'll become & dreaming of h o p e s f o r t h e i r f u t u r e . Yo u s t a r t making plans, and then they're gone. It's a lonely e x p e r i e n c e ." @CCZONA


Слайд 26

FACEBOOK
 E M O TI O N A L C O N TA I G O N Algorithmic Profiling DeAnonymization


Слайд 27


Слайд 28

FACEBOOK
 YEAR I N R EV I EW Algorithmic Profiling DeAnonymization Consent Issues Unproven Methods Inadvertent Algorithmic Cruelty Deception Filtering No Recourse Creepy Stalkery Messing With Heads Accurate, But Not Right Shaming Diversity Fail Black Box


Слайд 29

I N A D V E R T E N T A L G O R I T H M I C C R U E LT Y Inadvertent algorithmic cruelty is the result of code that works in the overwhelming majority of cases but doesn’t take other use cases into account. @ C C Meyer EricZ O N A


Слайд 30

"The Year in Review ad keeps coming up in my feed, rotating through different fun-and-fabulous backgrounds, as if celebrating a death, and there is no obvious way to stop it."


Слайд 31

INCREASE AWARENESS OF 
 A N D C O N S I D E R AT I O N F O R 
 T H E FA I L U R E M O D E S , T H E E D G E C A S E S , T H E W O R S T- C A S E S C E N A R I O S . –Eric Meyer @CCZONA


Слайд 32

BE HUMBLE. WE CANNOT INTUIT I N N E R S TAT E , EMOTIONS, 
 P R I V AT E SUBJECTIVITY @CCZONA


Слайд 33

F I TB I T S E X TR A C K I N G Algorithmic Profiling


Слайд 34


Слайд 35


Слайд 36


Слайд 37


Слайд 38

UBER


Слайд 39


Слайд 40


Слайд 41


Слайд 42

consent is permission granted Informed freely (where "no" is consequence-free alternative and the default value) with informed appreciation and understanding (ahead of time) of the facts, implications, and consequences


Слайд 43

Informed consent is permission freely granted (where "no" is consequencefree alternative and the default value) with informed appreciation & understanding (ahead of time) of the facts, implications, & consequences


Слайд 44

GOOGLE ADWORDS


Слайд 45


Слайд 46

A BLACK IDENTIFYING NAME WAS 
 2 5 % M O R E L I K E LY T O R E S U LT I N A N A D T H AT I M P L I E D A N A R R E S T R E C O R D – H a r v a r d U n i v e r s i t y, D i s c r i m i n a t i o n i n O n l i n e A d D e l i v e r y s t u d y ( 2 0 1 3 ) @CCZONA


Слайд 47

GOOGLE / FLICKR / APPLE I M A G E A N A LY S I S


Слайд 48

iPhoto Face Detection @CCZONA


Слайд 49

Flickr Auto-Tagging @CCZONA


Слайд 50

Flickr Auto-Tagging @CCZONA


Слайд 51

Google Photos 
 Auto-Categorizing @CCZONA


Слайд 52

AFFIRM


Слайд 53


Слайд 54


Слайд 55


Слайд 56


Слайд 57


Слайд 58

F L I P P I N G T H E PA R A D I G M LESSONS FROM THE PROFESSIONAL ETHICISTS


Слайд 59

AV O I D H A R M 
 TO OTHERS ACM Code of Ethics @CCZONA


Слайд 60

AVOID HARM consider decisions' potential impacts on others


Слайд 61

AVOID HARM project the likelihood of consequences to others


Слайд 62

CONTRIBUTE TO 
 HUMAN WELL-BEING ACM Code of Ethics @CCZONA


Слайд 63

CONTRIBUTE WELL-BEING minimize negative consequences to others @CCZONA


Слайд 64

B E H O N E S T. B E T R U S T W O R T H Y. ACM Code of Ethics @CCZONA


Слайд 65

H O N E S T. T R U S T W O R T H Y. Provide others with full disclosure of limitations @CCZONA


Слайд 66

H O N E S T. T R U S T W O R T H Y. Call attention to signs of risk of harm to others @CCZONA


Слайд 67

A C T I V E LY C O U N T E R 
 BIAS & INEQUALITY @CCZONA


Слайд 68

A C T I V E LY C O U N T E R B I A S & I N E Q U A L I T Y • equality • tolerance • respect • justice • anti- discrimination @CCZONA


Слайд 69

A C T I V E LY C O U N T E R B I A S & I N E Q U A L I T Y • Culture • Systems • Assumptions • Ignorance • Malice @CCZONA


Слайд 70

A C T I V E LY C O U N T E R B I A S & I N E Q U A L I T Y • Unequal access to resources & power • Unfair outcomes @CCZONA


Слайд 71

AUDIT OUTCOMES @CCZONA


Слайд 72

WE'RE IN A RACE


Слайд 73

DEEP LEARNING ARMS RACE • Facebook, Google, and Microsoft are making big bets @CCZONA


Слайд 74

INSIGHTFUL ALGORITHMS ARE GROWING • More precise in correctness • More damaging in wrongness @CCZONA


Слайд 75

E M PAT H E T I C C O D E R S Identify potential harms @CCZONA


Слайд 76

E M PAT H E T I C C O D E R S Anticipate diverse ways to screwup @CCZONA


Слайд 77

WE MUST HAVE DECISION-MAKING AUTHORITY
 IN THE HANDS OF H I G H LY 
 D I VEEM S S E R T A 
 @CCZONA


Слайд 78

DIVERSE. OF DIFFERING KIND, FORM,AND CHARACTER @CCZONA


Слайд 79

Tokenism is not diversity @CCZONA


Слайд 80

The point of culture fit is to avoid disruption of groupthink @CCZONA


Слайд 81

Unidimensional variety
 is not diversity @CCZONA


Слайд 82

@CCZONA


Слайд 83

E M PAT H E T I C C O D E R S Cultivate informed consent @CCZONA


Слайд 84

E M PAT H E T I C C O D E R S Audit constantly @CCZONA


Слайд 85

E M PAT H E T I C C O D E R S Recognize bias is inherent @CCZONA


Слайд 86

E M PAT H E T I C C O D E R S Visionary about countering bias @CCZONA


Слайд 87

E M PAT H E T I C C O D E R S Aim mining tools at public benefit consequences @CCZONA


Слайд 88

E M PAT H E T I C C O D E R S Commit to transparency @CCZONA


Слайд 89

PROFESSIONALS 
 APPLY EXPERTISE & JUDGEMENT ABOUT 
 HOW TO 
 SOLVE PROBLEMS @CCZONA


Слайд 90

❌ ❌ ❌❌ ❌ ❌❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ Algorithmic Profiling DeAnonymization Black Box Personally Human Replicates Bias Identifiable Info Complexity Fail Uncritical Assumptions Moved Fast, Broke Things High Risk False Neutrality Consequences Invasion Of Privacy Not How Valid Data Insecurity Research Works Disparate Impact Unproven Methods Deception No Recourse Creepy Stalkery Accurate, But Not Right Shaming ❌ ❌ ❌ ❌ Consent Issues Inadvertent Algorithmic Cruelty Filtering Messing With Heads Diversity Fail


Слайд 91

REFUSE TO 
 P L AY A L O N G . @CCZONA


Слайд 92

THANK YOU. @CCZONA


Слайд 93

CREDITS @CCZONA


Слайд 94

I M A G E U N D E R S TA N D I N G : 
 DEEP LEARNING WITH CONVOLUTIONAL NEURAL NETS Roelof Pieters @graphific http://www.slideshare.net/ roelofp/python-for-imageunderstanding-deeplearning-with-convolutionalneural-nets @CCZONA


Слайд 95

A H I P P O C R AT I C O AT H F O R D ATA S C I E N C E Roelof Pieters @graphific http://www.slideshare.net/ roelofp/a-hippocratic-oathfor-data-science @CCZONA


Слайд 96

THE ETHICS OF BEING A PROGRAMMER Kate Heddleston @heddle317 https://youtu.be/ DB7ei5W1eRQ @CCZONA


Слайд 97

IMAGES • Kate Heddleston: PyCon SE 2015 video • Roelof Pieters: Hendrik https://twitter.com/hen_drik/status/612653056421982208 • Code is made by people: Chris Eppstein https://twitter.com/chriseppstein/status/611612633335095296 • Recipe cards: Olivia Juice & Co. http://olivejuiceco.typepad.com/my_weblog/2006/04/easter_recap_an.html • Crochet pattern & shawl: http://www.abc-knitting-patterns.com/1129.html • Wargames font: http://www.urbanfonts.com/fonts/wargames.htm • Space Invaders: http://www.caffination.com/backchannel/shooting-for-the-high-score-3942/ • Wheat: https://www.flickr.com/photos/paule92/9506023990/ • Eye shadows: https://www.flickr.com/photos/niallb/5300259686/ • Colored pencils: https://www.flickr.com/photos/jenson-lee/6315443914/ • Buttons: https://www.flickr.com/photos/48462557@N00/3616793654/ • Cookie face: https://www.flickr.com/photos/amayu/4462907505/in/pool-977532@N24/ • Facebook emotion marionettes: http://altlaw.info/2014/07/emotional-contagion-subliminal-messaging-wheredoes-it-end-for-facebook/ @CCZONA


Слайд 98

ARTICLES • Association for Computing Machinery Code of Ethics http://www.acm.org/about/code-of-ethics • The 10 Commandments of Egoless Programming http://www.techrepublic.com/article/the-tencommandments-of-egoless-programming-6353837/ • Disparate Impact Analysis is Key to Ensuring Fairness in the Age of the Algorithm http:// www.datainnovation.org/2015/01/disparate-impact-analysis-is-key-to-ensuring-fairness-in-the-ageof-the-algorithm/ • On Algorithmic Fairness, Discrimination and Disparate impact. http://fairness.haverford.edu/ • Big Data's Disparate Impact http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2477899 • White House https://www.whitehouse.gov/sites/default/files/docs/ big_data_privacy_report_may_1_2014.pdf • Algorithmic Accountability & Transparency http://www.nickdiakopoulos.com/projects/algorithmicaccountability-reporting/ • What is Deep Learning and why should you care? http://radar.oreilly.com/2014/07/what-is-deep@CCZONA learning-and-why-should-you-care.html


Слайд 99

CASE STUDIES • FitBit: http://thenextweb.com/insider/2011/07/03/fitbit-users-are-inadvertently-sharing-details-of-their-sex-lives-with-the-world/ • Uber: http://www.forbes.com/sites/kashmirhill/2014/10/03/god-view-uber-allegedly-stalked-users-for-party-goers-viewingpleasure/ & http://valleywag.gawker.com/uber-allegedly-used-god-view-to-stalk-vip-users-as-a-1642197313 • Affirm: http://recode.net/2015/05/06/max-levchins-affirm-raises-275-million-to-make-loans/ & http://time.com/3430817/paypallevchin-affirm-lending/ & http://www.nytimes.com/2015/01/19/technology/banking-start-ups-adopt-new-tools-for-lending.html • Shutterfly: http://jezebel.com/shutterfly-thinks-you-just-had-a-baby-1576261631 & http://www.adweek.com/adfreak/shutterflycongratulates-thousands-women-babies-they-didnt-have-157675 (Zuckerberg on miscarriage: https://www.facebook.com/ photo.php?fbid=10102276573729791) • Target: http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html • Facebook Emotional Contagion Study: http://www.theguardian.com/science/head-quarters/2014/jul/01/facebook-cornellstudy-emotional-contagion-ethics-breach & http://psychcentral.com/blog/archives/2014/06/23/emotional-contagion-onfacebook-more-like-bad-research-methods/ • Facebook Year in Review: http://meyerweb.com/eric/thoughts/2014/12/24/inadvertent-algorithmic-cruelty/ & http:// www.theguardian.com/technology/2014/dec/29/facebook-apologises-over-cruel-year-in-review-clips • Google AdWords: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2208240 & http://freakonomics.com/2013/04/08/howmuch-does-your-name-matter-full-transcript/ • Flickr: http://www.theguardian.com/technology/2015/may/20/flickr-complaints-offensive-auto-tagging-photos • Google Photos: https://twitter.com/jackyalcine/status/615329515909156865 & https://www.yahoo.com/tech/google-photos@CCZONA mislabels-two-black-americans-as-122793782784.html


Слайд 100

VIDEOS • MarI/O Machine Learning for Video Games https://youtu.be/qv6UVOQ0F44 • Algorithmic Accountability Workshop by Tow Center https://vimeo.com/125622175 @CCZONA


Слайд 101

THANK YOU♥ Noah Kantrowitz Mike Foley Heidi Waterhouse Estelle Weyl VM Brasseur Chris Hausler Yoz Grahame
 We So Crafty @CCZONA


Слайд 102


×

HTML:





Ссылка: