'

ЛАЗЕРЫ

Понравилась презентация – покажи это...





Слайд 0

ЛАЗЕРЫ ЛАЗЕРЫ © В.Е. Фрадкин, 2004 © Г.Н. Мешкова, 2004


Слайд 1

Гиперболоид инженера Гарина Главная ошибка А.Н.Толстого. Методами геометрической оптики Получить такой луч НЕЛЬЗЯ!


Слайд 2

Вынужденное излучение В 1917 г. А. Эйнштейн предсказал возможность перехода атома с высшего энергетического состояния в низшее под влиянием внешнего воздействия. Такое излучение называется вынужденным излучением и лежит в основе работы лазеров.


Слайд 3

История идеи В 1940 г. В.А.Фабрикант указал на возможность использования вынужденного излучения для усиления электромагнитных волн. Н.Г.Басов и А.М. Прохоров и независимо американец Ч.Таунс изобрели квантовый микроволновый генератор (1954). Т.Г.Мейман в 1960г. создал квантовый оптический генератор – лазер на кристалле рубина. А. Джаван (США) в 1960г. создал первый газовый лазер (на смеси Не-Ne).


Слайд 4

ЛАЗЕР (оптический квантовый генератор; аббревиатура от начальных букв английских слов Light Amplification by Stimulated Emission Radiation - усиление света в результате вынужденного излучения), источник оптического когерентного излучения, характеризующегося высокой степенью монохроматичности, направленностью и большой плотностью энергии. Один из основных приборов квантовой электроники. Первый лазер (на рубине) был создан в 1960 Т. Мейманом (США); первый газовый лазер (на смеси Не-Ne) - А. Джаваном (США). Главный элемент лазера - активная среда, для образования которой используют различные методы накачки. Разработаны лазеры на основе газовых, жидкостных и твердотельных активных сред (в том числе на диэлектрических кристаллах, стеклах, полупроводниках). Лазеры применяются в научных исследованиях (в физике, астрономии, химии, биологии и других областях), медицине (хирургии, офтальмологии и т.п.), а также в технике (лазерная технология, в том числе создание материалов полупроводниковой электроники, высокоточная обработка поверхностей сверхтвердых материалов и другие методы обработки). Лазеры позволили осуществить эффективную оптическую (в том числе космическую) связь и локацию.


Слайд 5


Слайд 6

Спонтанное и вынужденное излучение


Слайд 7

Схема гелий-неонового лазера: 1 – стеклянная кювета со смесью гелия и неона, в которой создается высоковольтный разряд; 2 – катод; 3 – анод; 4 – глухое сферическое зеркало с пропусканием менее 0,1 %; 5 – сферическое зеркало с пропусканием 1–2 %. 2 3 3 3


Слайд 8

Моделирование работы лазера


Слайд 9

Лазер, двухуровневая модель.


Слайд 10

Рубиновый лазер


Слайд 11

ОБЛАСТИ ПРИМЕНЕНИЯ ЛАЗЕРОВ Военное дело (лазерная локация, лазерные системы слежения, наведения и т.д.) Медицина (хирургия, офтальмология, терапия) Связь Информационные технологии Искусство (зрелищные шоу) Голография Лазерная сварка, пайка и резка металлов Лазерный термоядерный синтез Лазерный катализ


Слайд 12

Принцип создания голограмм


Слайд 13

Образцы лазерных голограмм


Слайд 14

Информационные технологии Лазер для вычислительной техники


Слайд 15

Лазеры в военном деле Американская система боевого ТЕА-лазера


Слайд 16

Тактический высокоэнергетический лазер (THEL)


Слайд 17

Лазеры в медицине Лазерная хирургическая установка


Слайд 18

Установки для лазерной терапии


×

HTML:





Ссылка: