'

Элективный курс по алгебре по теме:

Понравилась презентация – покажи это...





Слайд 0

«СПОСОБЫ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ» Элективный курс по алгебре по теме:


Слайд 1

Пояснительная записка Данный курс рассчитан на 17 часов (I полугодие). Квадратные уравнения – это фундамент, на котором строится здание алгебры. Квадратные уравнения часто находят применение при решении тригонометрических, показательных, логарифмических, иррациональных уравнений и неравенств (10-11 классы). Все учащиеся умеют решать квадратные уравнения, начиная со школьной скамьи (8 класса). В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать любые уравнения. На занятиях курса рассматриваются десять способов решения квадратных уравнений. В материалах курса доступное и мотивированное изложение теоретических сведений. Развитие содержания идёт по спирали, позволяющей неоднократно возвращаться на новом уровне ко всем вопросам. Программа курса по выбору приобщает учеников к постоянно меняющемуся, развивающемуся знанию, к новой информации; помогает удовлетворять познавательную потребность учащихся; выстраивает такую учебную траекторию, двигаясь по которой ученики достигают максимально возможного уровня развития интеллекта, а также предусматривает изучение проблемы, которая интегрирует знания со структурами мышления: развитие продуктивного мышления и навыком его практического применения.


Слайд 2


Слайд 3


Слайд 4


Слайд 5


Слайд 6

10. СПОСОБ: Геометрический способ решения квадратных уравнений. В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал - Хорезми. Примеры. 1) Решим уравнение х2 + 10х = 39. В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39». Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25. D X C A X B


Слайд 7

Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Однако, значение квадратных уравнений заключается не только в изяществе и краткости решения задач, хотя и это весьма существенно. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.


×

HTML:





Ссылка: