'

Основные логические операции

Понравилась презентация – покажи это...





Слайд 0

Основные логические операции


Слайд 1

Кран В Кран А КОГДА ИЗ ТРУБЫ ПОЛЬЕТСЯ ВОДА? Открыт кран А Открыт кран В И


Слайд 2

ЛОГИЧЕСКОЕ УМНОЖЕНИЕ «Сегодня светит солнце и идет дождь» А – «Сегодня светит солнце» В – «Сегодня идет дождь» Логическое умножение (конъюнкция) образуется соединением двух (или более) высказываний в одно с помощью союза «и».


Слайд 3

ЛОГИЧЕСКОЕ УМНОЖЕНИЕ (КОНЪЮНКЦИЯ) Обозначение: &, ^, *. Союз в естественном языке: и. А ^ B – «Сегодня светит солнце и идет дождь» 0 0 0 1 Таблица истинности Конъюнкция двух высказываний истинна тогда и только тогда, когда оба высказывания истинны, и ложна, когда хотя бы одно из высказываний ложно. Ложь Ложь Ложь Истина


Слайд 4

Кран А Кран В КОГДА ИЗ ТРУБЫ ПОЛЬЕТСЯ ВОДА? Открыт кран А Открыт кран В ИЛИ


Слайд 5

ЛОГИЧЕСКОЕ СЛОЖЕНИЕ «На стоянка находятся «Мерседес» или «Жигули» А – На стоянке находится «Мерседес» В – На стоянке находится «Жигули» Логическое сложение (дизъюнкция) образуется соединением двух (или более) высказываний в одно с помощью союза «или».


Слайд 6

ЛОГИЧЕСКОЕ СЛОЖЕНИЕ (ДИЗЪЮНКЦИЯ) Обозначение: +, V. Союз в естественном языке: или. А V B – На стоянке находится «Мерседес» или «Жигули» Дизъюнкция двух высказываний ложна тогда и только тогда, когда оба высказывания ложны, и истинна, когда хотя бы одно из высказываний истинно. 1 1 0 1 Истина Истина Ложь Истина Таблица истинности


Слайд 7

ЗАПОМНИ!


Слайд 8

ЛОГИЧЕСКОЕ ОТРИЦАНИЕ А – «Сегодня светит солнце» В – «Сегодня не светит солнце» Логическое отрицание (инверсия) образуется из высказывания с помощью добавления частицы «не» к сказуемому или использования оборота речи «неверно, что…». А – «У данного компьютера жидкокристаллический монитор» В – «Неверно, что у данного компьютера жидкокристаллический монитор»


Слайд 9

ЛОГИЧЕСКОЕ ОТРИЦАНИЕ (ИНВЕРСИЯ) Истина Ложь Обозначение: ¬. Союз в естественном языке: не; неверно, что… А – «Сегодня светит солнце» ¬ А – «Неверно, что сегодня светит солнце» или «Сегодня не светит солнце» 1 0 Инверсия высказывания истинна, если высказывание ложно, и ложна, когда высказывание истинно. Таблица истинности


Слайд 10

ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ Обозначение: >. Союз в естественном языке: если…, то…. Если на улице, то асфальт мокрый. Если хорошо горит красный свет на светофоре, то стою и жду зеленый. Если прямо пойдешь, то коня потеряешь. Если коровы летают, то дважды два – пять. Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи «если…, то…».


Слайд 11

1 0 1 1 Импликация двух высказываний ложна тогда и только тогда, когда из истинного высказывания следует ложное. Истина Ложь Истина Истина ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ (ИМПЛИКАЦИЯ) А – «На улице дождь» В – «Асфальт мокрый» А > B – «Если на улице дождь, то асфальт мокрый» Таблица истинности


Слайд 12

Обозначение: =, -, ~. Союз в естественном языке: тогда и только тогда, когда…. Число А – четное, тогда и только тогда, когда число А делится нацело на 2. Прямоугольник является квадратом тогда и только тогда, когда все его стороны равны. ЛОГИЧЕСКОЕ РАВЕНСТВО Логическое равенство (эквивалентность) образуется соединением двух высказываний в одно при помощи оборота речи «… тогда и только тогда, когда…».


Слайд 13

ЛОГИЧЕСКОЕ РАВЕНСТВО (ЭКВИВАЛЕНТНОСТЬ) А – «Число А - четное» В – «Число А кратно 2» А - B – «Число А – четное, тогда и только тогда, когда число А кратно 2» 0 0 1 1 Эквивалентность двух высказываний истинна тогда и только тогда, когда оба высказывания истинны или оба ложны. Ложь Ложь Истина Истина Таблица истинности


×

HTML:





Ссылка: