'

Параметрическое линейное программирование

Понравилась презентация – покажи это...





Слайд 0

Параметрическое линейное программирование Выполнила: студентка 3 курса, группы ММ-61 Лучинина Екатерина Проверил: Щиканов Алексей Юрьевич


Слайд 1

Параметрическое линейное программирование представляет собой один из разделов математического программирования, изучающий задачи, в которых целевая функция или ограничения зависят от одного или нескольких параметров. С математической точки зрения параметрическое программирование выступает как одно из средств анализа чувствительности решения к вариации исходных данных, оценки устойчивости решения. Сущность задачи параметрического ЛП


Слайд 2

Геометрическая интерпретация задачи параметрического ЛП Если обратиться к геометрической интерпретации задачи, то можно заметить, что вектор-градиент линейной формы определяется её параметром. Например, для целевой функции L(X, ?) = ?X1 + (1-?)X2 при различных значениях параметра ? градиент определяет различные направления роста функции. Нетрудно видеть, что, если при некотором значении параметра максимум достигается в вершине A, то небольшая вариация этого значения несколько изменит направление градиента, но не изменит положение точки максимума. Отсюда напрашивается вывод, что некоторый план, оптимальный при ? = ?0 оптимален и в окрестности ?0, т.е. при ? ? ? ? ? где ?0   [?, ?].


Слайд 3

Геометрическая интерпретация задачи параметрического ЛП


Слайд 4

Алгоритм решения задачи параметрического ЛП Считая значение параметра равным некоторому числу , находим оптимальный план Х* или устанавливаем неразрешимость полученной задачи линейного программирования. Определяют множество значений параметра , для которых найденный оптимальный план является оптимальным или задача неразрешима. Эти значения параметра исключаются из рассмотрения. Полагают значение параметра равным некоторому числу, принадлежавшему оставшейся части промежутка, и находят решение полученной задачи линейного программирования. Определяют множество значений параметра , для которых новый оптимальный план остается оптимальным или задача неразрешима. Вычисления повторяются до тех пор, пока не будут исследованы все значения параметра .


Слайд 5

Пример задачи параметрического ЛП Предприятие должно выпустить два вида продукции А и В, для изготовления которых используется три вида сырья, нормы расходов заданы в таблице. Известно, что цена на А единицу продукции может изменяться от 2 до 12 у.е., для В от 13 до 3 у.е. Найти оптимальные планы выпуска для заданных интервалов цен.


Слайд 6

Решение задачи: Строим систему ограничений, находим целевую функцию:


Слайд 7

В соответствии с ограничениями и полученными параметрами строим первую симплекс таблицу: Решение начинаем при


Слайд 8


Слайд 9

При решение найдено. Найдем интервал изменения , при котором решение будет оставаться оптимальным. При > выбранный столбец является разрешающим. Для нахождения нового оптимального решения при >


Слайд 10


Слайд 11

Ищем решение при


Слайд 12


Слайд 13

Ответ:


×

HTML:





Ссылка: