'

ДИНАМИКА ТВЕРДОГО ТЕЛА

Понравилась презентация – покажи это...





Слайд 0

ДИНАМИКА ТВЕРДОГО ТЕЛА ЛЕКЦИЯ 5: ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА


Слайд 1

1. Уравнения движения При плоскопараллельном движении точки тела движутся в плоскостях, параллельных некоторой неподвижной (основной) плоскости. Центр масс движется параллельно неподвижной плоскости, а движение относительно центра масс есть вращение тела вокруг оси, проходящей через центр масс и перпендикулярной к неподвижной плоскости. Движение = движение центра масс+ вращение относительно центра масс Положение тела определено если известны Теорема о движении центра масс Теорема об изменении момента количеств движения Уравнения для нахождения


Слайд 2

2. Использование теоремы об изменении кинетической энергии При интегрировании системы уравнений движения можно эти уравнения заменять другими, получающимися в результате их взаимных комбинаций. В частности, иногда удобно использовать теорему об изменении кинетической энергии По теореме Кенига кинетическая энергия равна По теореме об изменении кинетической энергии Изменение кинетической энергии = Работа внешних сил


Слайд 3

3. Использование теоремы моментов для оси z неподвижной системы Кинетический момент относительно неподвижного центра О равен сумме кинетического момента центра масс, в котором сосредоточена масса тела, относительно центра О и кинетического момента тела относительно центра С в его движении по отношению к системе осей, проходящих через центр масс и перемещающихся поступательно


Слайд 4

4. Пример 1: скольжение цилиндра по наклонной плоскости Тяжелый круглый цилиндр движется, касаясь абсолютно гладкой наклонной плоскости, так, что ось цилиндра остается все время горизонтальной. Движение происходит параллельно вертикальной плоскости, перпендикулярной к оси цилиндра. Найти уравнения движения цилиндра. Уравнения движения Уравнения связи Цилиндр вращается с постоянной угловой скростью , сообщенной ему в начальный момент и движется с постоянным ускорением


Слайд 5

5. Пример 2: качение цилиндра без проскальзывания Тяжелый круглый цилиндр катится по шероховатой наклонной плоскости без скольжения. Исследовать движение цилиндра. Уравнения движения Уравнения связи 1 Уравнения связи 2 Для однородного цилиндра Когда возможно такое движение?


Слайд 6

6. Пример 3: качение цилиндра с проскальзыванием Тяжелый круглый цилиндр катится по шероховатой наклонной плоскости. Исследовать движение цилиндра. Уравнения движения Уравнения связи 1 Уравнения связи 2


Слайд 7

7. Пример 4: качение цилиндра со сдвинутым центром тяжести Неоднородный диск катится без скольжения по неподвижной горизонтальной плоскости. Масса диска равна m, радиус a, центр масс С находится на расстоянии b от геометрического центра, момент инерции относительно оси, перпендикулярной плоскости диска и проходящей через его центр масс, равен Ic . Получить дифференциальные уравнения движения диска. Уравнения движения


Слайд 8

8. Пример 4: качение цилиндра со сдвинутым центром тяжести подпрыгивание


Слайд 9

9. Пример 5: падение стержня Однородный стержень массы m и длины 2l расположен вертикально. Нижний конец опирается на гладкую плоскость. После того как ему задали бесконечно малое смещение от вертикали он начал падать. Получить ДУ движения. 1) Горизонтальных сил нет. Центр масс падает вертикально 2) Закон сохранения энергии 3) Уравнение связи


Слайд 10

10. Пример 5: падение стержня Горизонтальная скорость имеет максимум


Слайд 11

11. Пример 6: падение стержня Тонкий однородный стержень приставлен одним концом к гладкой вертикальной стене, а другим концом опирается на гладкий пол. Стержень пришел в движение из состояния покоя, когда он составлял угол с вертикалью. Вычислить начальные давления на стену и пол.


Слайд 12

12. Пример 6: падение стержня


×

HTML:





Ссылка: