'

Дискретизация Свертка ДПФ

Понравилась презентация – покажи это...





Слайд 0

Дискретизация Свертка ДПФ Лектор: Лукин Алексей Сергеевич


Слайд 1

План Звуковые сигналы и их восприятие Цифровые и аналоговые сигналы. Дискретизация. Теорема Котельникова. Алиасинг. Фильтрация звука. Линейные системы. Свертка. Простейшие двумерные фильтры для изображений Дискретное преобразование Фурье Спектральный анализ


Слайд 2

Звук и слух Диапазон звуковых сигналов и пороги восприятия


Слайд 3

Основы слухового восприятия Звуковые волны поступают на улитку, возбуждая ее колебания Жесткость улитки меняется с расстоянием, поэтому каждая часть резонирует в своем частотном диапазоне image from Wikipedia


Слайд 4

Основы слухового восприятия К разным частям улитки подходят различные группы нервов, передающие в мозг информацию об амплитуде и фазе колебаний Таким образом, улитка раскладывает звук на частотные составляющие image from Wikipedia


Слайд 5

Сигналы Сигнал – скалярная функция от одного или нескольких аргументов. s(t) – звук Примеры сигналов f(x,y) – изображение


Слайд 6

Сигналы Аналоговые (непрерывные) Примеры: звук в воздухе или в проводе, идущем от микрофона изображение (до ввода в компьютер) запись показаний датчика Цифровые (дискретные) Примеры: звук в компьютере (одномерный массив чисел) изображение в компьютере (двумерный массив чисел) запись показаний датчика в компьютере (одномерный массив) Одномерный цифровой сигнал


Слайд 7

Оцифровка сигналов Дискретизация по времени (аргумент функции) Квантование по амплитуде (значение функции) АЦП (ADC) – аналогово-цифровой преобразователь Параметры: частота дискретизации, разрядность квантования (пример: 44.1 кГц, 16 бит – формат Audio CD)


Слайд 8

Оцифровка сигналов При каких условиях по цифровому сигналу можно точно восстановить исходный аналоговый? Предположим, что значения амплитуд в цифровом сигнале представлены точно. Введем понятие спектра аналогового сигнала: (разложение на синусоиды с различными частотами) x(t) – исходный сигнал X(?) – спектр, т.е. коэффициенты при гармониках с частотой ?


Слайд 9

Теорема Котельникова Пусть спектр сигнала x(t) не содержит частот выше F, т.е. X(?)=0 за пределами отрезка [-F, F] дискретизация сигнала x(t) производится с частотой Fs , т.е. в моменты времени nT, здесь T= Fs-1 Fs>2F Тогда исходный аналоговый сигнал x(t) можно точно восстановить из его цифровых отсчетов x(nT), пользуясь интерполяционной формулой


Слайд 10

Теорема Котельникова Как выглядят интерполирующие sinc-функции? Бесконечно затухающие колебания


Слайд 11

Теорема Котельникова Реконструкция аналоговых сигналов. Sinc-интерполяция.


Слайд 12

Эффект Гиббса Применимость sinc-интерполяции для изображений Эффект Гиббса Цифровые отсчеты sinc-интерполяция другая интерполяция


Слайд 13

Наложение спектров Что будет, если условия теоремы Котельникова не выполнены? Пусть звук не содержит частот выше 20 кГц. Тогда, по теореме Котельникова, можно выбрать частоту дискретизации 40 кГц. Пусть в звуке появилась помеха с частотой 28 кГц. Условия теоремы Котельникова перестали выполняться.


Слайд 14

Наложение спектров Проведем дискретизацию с частотой 40 кГц, а затем – восстановим аналоговый сигнал sinc-интерполяцией. Помеха отразилась от половины частоты дискретизации в нижнюю часть спектра и наложилась на звук. Помеха переместилась в слышимый диапазон. Это называется наложением спектров (алиасинг).


Слайд 15

Наложение спектров Как избежать наложения спектров? Применить перед оцифровкой анти-алиасинговый фильтр Он подавит все помехи выше половины частоты дискретизации (выше 20 кГц) и пропустит весь сигнал ниже 20 кГц. После этого условия теоремы Котельникова будут выполняться и алиасинга не возникнет. Следовательно, по цифровому сигналу можно будет восстановить исходный аналоговый сигнал.


Слайд 16

Линейные системы Система – преобразователь сигнала. Линейность: Инвариантность к сдвигу: H x(t) y(t)


Слайд 17

Импульсная характеристика Единичный импульс ?[n] Разложение произвольного сигнала на взвешенную сумму единичных импульсов


Слайд 18

Импульсная характеристика Отклик системы на единичный импульс h[n] – импульсная характеристика системы (импульсный отклик системы)


Слайд 19

Импульсная характеристика Вычисление отклика линейной системы на произвольный входной сигнал Свертка h[n] – ядро свертки


Слайд 20

Линейные системы Итак, любая линейная инвариантная к сдвигу система производит операцию свертки входного сигнала со своей импульсной характеристикой. Важное свойство линейных систем: При подаче на любую линейную систему синусоиды, на выходе получается синусоида той же частоты, что и на входе. Измениться могут только ее амплитуда или фаза. Следствие: линейные системы удобно анализировать, раскладывая любые входные сигналы на синусоиды.


Слайд 21

Двумерные фильтры Как работают фильтры Коэффициенты фильтра, ядро свертки 3x3, «функция размытия точки» -1 ? k ? 1, -1 ? p ? 1


Слайд 22

Двумерные фильтры Свертка // Обнулить изображение Dest[i][j] ... // Выполнить свертку for (i=0; i<Height; i++) // Для каждого пикс. Dest[i][j]... for (j=0; j<Width; j++) for (k=-1; k<=1; k++) // ...превратить его в ядро свертки for (p=-1; p<=1; p++) Dest[i+k][j+p] += Src[i][j] * Ker[k][p]; // и сложить Подводные камни: Выход за границы массива Выход за пределы допустимого диапазона яркости пикселей Обработка краев.


Слайд 23

Двумерные фильтры Свойства фильтров Результат фильтрации однотонного (константного) изображения – константное изображение. Его цвет равен Следствие: чтобы фильтр сохранял цвет однотонных областей, нужно чтобы Следствие: если сумма коэффициентов фильтра равна нулю, то он переводит однотонные области в нулевые.


Слайд 24

Примеры фильтров Размытие (blur)


Слайд 25

Примеры фильтров Повышение четкости (sharpen)


Слайд 26

Примеры фильтров Нахождение границ (edges)


Слайд 27

Примеры фильтров Тиснение (embossing)


Слайд 28

Примеры фильтров Простейшее размытие Константное размытие “box-фильтр” (любой размер фильтра) Гауссово размытие (любой размер фильтра)


Слайд 29

Примеры фильтров Повышение резкости Нахождение границ Тиснение + модуль, нормировка, применение порога… + сдвиг яркости, нормировка…


Слайд 30

Двумерные фильтры Свойства двумерной свертки (повторение) Линейность Инвариантность к сдвигу Пусть X и Y – изображения, H – ядро свертки


Слайд 31

Двумерные фильтры Сепарабельные (разделимые) фильтры Гауссиан – сепарабельный фильтр, т.к. Если фильтр сепарабельный, то фильтрацию можно производить быстрее: Отфильтровать все столбцы одномерным фильтром F(k) Отфильтровать все строки одномерным фильтром G(p) Еще один сепарабельный фильтр – box-фильтр


Слайд 32

Двумерные фильтры Unsharp Mask Параметры: радиус, сила эффекта, порог срабатывания Идея: вычесть из изображения его размытую копию, скомпенсировав уменьшение яркости Переменная сила эффекта ? помогает избежать усиления шума. Обычно ? уменьшают при малых значениях разности X – GX (меньше порога срабатывания) ? контролирует силу эффекта, GX – размытая копия изображения (обычно фильтр Гаусса)


Слайд 33

Двумерные фильтры Медианный фильтр Каждый пиксель принимает значение, являющееся медианой значений пикселей в окрестности Медиана – средний элемент в отсортированном массиве Позволяет подавить шум (особенно, единичные «выпадающие» пиксели), не размывая границ Медианный фильтр нелинейный (как доказать?) Векторная медиана – такой элемент массива, для которого сумма L1-расстояний до остальных элементов минимальна (для одномерного случая – совпадает с предыдущим определением)


Слайд 34

Двумерные фильтры Медианный фильтр 5x5


Слайд 35

Двумерные фильтры Понятие о частотах в изображении и звуке Частоты и гармонические колебания (звук) Частоты и детали (изображение) Постоянная составляющая Действие фильтров Фильтр размытия – НЧ-фильтр Фильтр повышения четкости – ВЧ-фильтр Фильтр нахождения границ – ВЧ-фильтр Фильтры и обработка звука


Слайд 36

Преобразование Фурье Зачем раскладывать сигналы на синусоиды? Анализ линейных систем Слух и синусоиды Хорошо разработана теория и практика Дискретное преобразование Фурье (ДПФ) Для вещественного сигнала Прямое и обратное преобразования Фурье


Слайд 37

Преобразование Фурье Базисные функции дискретного преобразования Фурье для сигнала длины N = 8. Имеем N/2 + 1 = 5 различных базисных частот. Имеем N+2 базисные функции, 2 из которых тождественно равны нулю. Количество информации не изменяется: N чисел


Слайд 38

Преобразование Фурье Базисные функции образуют N-мерный ортогональный базис в пространстве N-мерных векторов исходных сигналов. Следовательно, разложение обратимо, т.е. по коэффициентам разложения (Ak, Bk) можно точно восстановить исходный дискретный сигнал. Обратное преобразование Фурье – вычисление суммы конечного ряда Фурье (сложить N штук N-точечных синусоид со своими коэффициентами).


Слайд 39

Преобразование Фурье Прямое преобразование Фурье – вычисление скалярных произведений сигнала на базисные функции: Для вычисления всех коэффициентов по этому алгоритму требуется примерно N2 умножений: очень много при больших длинах сигнала N.


Слайд 40

Преобразование Фурье Быстрое преобразование Фурье (БПФ, FFT) – ускоренный алгоритм вычисления ДПФ Основан на периодичности базисных функций (много одинаковых множителей) Математически точен (ошибки округления даже меньше, т.к. меньше число операций) Число умножений порядка N·log2N, намного меньше, чем N2 Ограничение: большинство реализаций FFT принимают только массивы длиной N = 2m Существует и обратное БПФ (IFFT) – такой же быстрый алгоритм вычисления обратного ДПФ.


Слайд 41

Преобразование Фурье Входные данные FFT N = 2m, размер FFT Входной вектор длины N, иногда в комплексном представлении Выходные данные FFT Коэффициенты Ak и Bk, иногда записанные в комплексном представлении


Слайд 42

Преобразование Фурье Двумерное ДПФ Базисные функции имеют вид двумерных синусоид с разными углами наклона и фазами Вычисление двумерного ДПФ Прямой способ – скалярные произведения со всеми базисными функциями. Очень много операций. Быстрый способ – декомпозиция на одномерные ДПФ


Слайд 43

Преобразование Фурье Быстрое вычисление двумерного ДПФ Вычислить одномерные комплексные ДПФ от каждой строки изображения. Результаты записать в виде комплексных массивов «обратно» в промежуточное «комплексное» изображение. Вычислить одномерные комплексные ДПФ от каждого столбца промежуточного комплексного изображения. Комплексные результаты записать «обратно». Это и есть коэффициенты двумерного ДПФ. Одномерные ДПФ можно считать с помощью FFT.


Слайд 44

Спектральный анализ Как вычислить и отобразить спектр сигнала? Взять нужный отрезок сигнала длины 2m; если нужный отрезок короче – дополнить его нулями. Если нужно – домножить сигнал на весовое окно, плавно спадающее к краям (для уменьшения размытия спектра). Вычислить FFT. Перевести комплексные коэффициенты в полярную форму: получить амплитуды. Отобразить график зависимости амплитуды от частоты. Примеры весовых окон


Слайд 45

Спектральный анализ Отображение спектров изображений Спектр – это картинка, показывающая зависимость амплитуды от частоты и от направления синусоиды. Амплитуды отображаются в виде яркостей. Нулевая частота – в центре спектра, низкие частоты вокруг центра, высокие – дальше от центра. Спектр обычно продублирован отражением от нулевой частоты. В реальных изображениях чаще всего гораздо большие амплитуды имеют низкие частоты (и постоянная составляющая). Поэтому постоянную составляющую иногда удаляют, или применяют логарифмический масштаб отображения амплитуд, чтобы пара самый мощных гармоник не скрыла остальные, менее мощные, но тоже существенные гармоники.


Слайд 46

Спектральный анализ Примеры изображений и их спектров Видно, что спектр одной синусоиды – это точка (не забываем про симметричное отражение спектра) Две синусоиды – две точки


Слайд 47

Спектральный анализ Примеры изображений и их спектров По спектру прослеживаются преобладающие направления в исходной картинке Много высоких частот в спектре – много мелких деталей в исходном изображении


Слайд 48

Спектральный анализ Отображение спектра звука: спектр Спектр – график зависимости амплитуды от частоты Низкие частоты – слева, высокие – справа Часто применяется логарифмический масштаб частот и амплитуд: “log-log-спектр” Временное и частотное разрешение спектра Децибелы: A1 – амплитуда измеряемого сигнала, A0 – амплитуда сигнала, принятого за начало отсчета (0 дБ) Разница на 6 дБ – разница по амплитуде в 2 раза, разница на 12 дБ – разница по амплитуде в 4 раза. Часто за 0 дБ принимается либо самый тихий слышимый звук, либо самый громкий звук, который может воспроизвести аудио-устройство.


Слайд 49

Спектральный анализ Примеры звуков и их спектров Фрагмент песни (стерео запись) Нота на гитаре сигнал близок к периодическому > его спектр линейчатый


Слайд 50

Спектральный анализ Отображение спектра звука: спектрограмма (сонограмма) Спектрограмма – график зависимости амплитуды от частоты и от времени, показывает изменение спектра во времени Short Time Fourier Transform (STFT)


Слайд 51

Спектральный анализ Отображение спектра звука: спектрограмма (сонограмма) Спектрограмма – график зависимости амплитуды от частоты и от времени, показывает изменение спектра во времени Низкие частоты – снизу, высокие – сверху Время идет справа налево Амплитуда – яркость или цвет Частотное и временное разрешение Short Time Fourier Transform (STFT) Показывает изменение спектра во времени


Слайд 52

Спектральный анализ Примеры звуков и их спектрограмм Нота на гитаре линейный масштаб частот логарифмический масштаб частот


×

HTML:





Ссылка: