'

Показательная функция

Понравилась презентация – покажи это...





Слайд 0

Показательная функция Определение. Функция, заданная формулой у = ах (где а >0, а ? 1, х – показатель степени), называется показательной функцией с основанием а. 900igr.net


Слайд 1

График показательной функции. При 0 <а < 1: При а > 1:


Слайд 2

Свойства показательной функции при а>1: 1.Область определения – множество действительных чисел. 2.Область значений – множество положительных действительных чисел. 3.Функция возрастает на всей числовой прямой. 4.При х = 0, у = 1, график проходит через точку (0; 1) при 0 < а < 1: 1. Область определения – множество действительных чисел. 2. Область значений – множество положительных действительных чисел. 3. Функция убывает на всей числовой прямой. 4. При х = 0, у = 1, график проходит через точку ( 0 ; 1).


Слайд 3

Свойства функции При а >1, 0 < а <1 справедливы равенства: 1. ах · ау = ах+у 2. ах : ау = ах-у 3. (а ·в)х = ах · вх 4. (а/в)х = ах/ вх 5. (ах)у = аху


Слайд 4

Выполни самостоятельно! 1. Постройте график функции у = 3х 2. Сравните числа: 1. 4 ? и 4? 2. (0,3)2 и ( 0,3)-3 3. Вычислите: 1. 21,3 · 2-0,7 · 40,7 2. (27· 64 )1/3


Слайд 5

Показательные уравнения Показательными уравнениями называются уравнения вида аf(x) = аq(x), где а – положительное число, отличное от 1, и уравнения, сводящиеся к этому уравнению.


Слайд 6

Способы решения показательных уравнений


Слайд 7

Первый способ Приведение обеих частей уравнения к одному и тому же основанию. Пример: 2х = 32, так как 32= 25, то имеем: 2х = 25 х = 5.


Слайд 8

Второй способ Путем введения новой переменной приводят уравнение к квадратному. Пример: 4х + 2х+1 – 24 = 0 Решение: Заметив , что 4х=(22 )х=( 2х)2 и 2х+1 = 2х ? 21 , запишем уравнение в виде: (2х )2 + 2?2х – 24 = 0, Введем новую переменную 2х = у; Тогда уравнение примет вид: У2 + 2у – 24 = 0 Д = в2 – 4 а с = 22 – 4?1?(–24) = 100> 0, находим у1 = 4, у2 = – 6. Получаем два уравнения: 2х= 4 и 2х = – 6 22 = 22 корней нет. х = 2. Второй способ


Слайд 9

Третий способ Вынесение общего множителя за скобки. Пример: 3х –– 3х+3 = –78 3х –3х ?33 = –78 3х ( 1 –33 ) = –78 3х ( – 26) = – 78 3x = – 78 : ( –26) 3х = 3 Х = 1.


Слайд 10

Четвертый способ Ответ: х = -0,5, х = 0. Графический: построение графиков функций в одной системе координат Пример: 4х = х + 1


Слайд 11

Выполните самостоятельно! Решите уравнения: 1) (?)х+2 = 9 2) 2х-1 = 1 3) 2 ·22х– 3 · 2х - 2 = 0 4) 2х = х + 3 5) 4х+1 + 4х = 320


Слайд 12

Показательные неравенства Показательными неравенствами называются неравенства вида аf(x) > аg(x) , где а – положительное число, отличное от нуля, и неравенства, сводящиеся к этому виду f(x) > g(x).


Слайд 13

показательные неравенства Если а > 1, то показательное неравенство аf (x) > аg (x) равносильно неравенству того же смысла f(x) > g(x). Если 0 < а < 1 , то показательное неравенство аf (x) > аg (x) равносильно неравенству противоположного смысла f(x) < g(x).


Слайд 14

Решение показательных неравенств 22х-4 > 64 22х-4 > 26 2х – 4 > 6 2х > 10 х > 5 Ответ: х > 5 (0,2)х ? 0,04 (0,2)х ? (0,2)2 х ? 2 Ответ: х ? 2


Слайд 15

Выполни самостоятельно! 1. 45-2х ? 0,25 2. 0,37+4х > 0,027 3. 2х + 2х+2 < 20 4. 112х+3 ? 121 5. 54х+2 ? 125


Слайд 16

А. Дистервег „Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, кто желает к ним приобщиться, должен достигнуть этого собственной деятельностью, собственными силами, собственным напряжением”


×

HTML:





Ссылка: