'

Кристаллы и правильные многогранники

Понравилась презентация – покажи это...





Слайд 0

Кристаллы и правильные многогранники Авторы Ученики 10В класса Терещенко Женя Жигулина Ольга МОУ «СОШ №2 города Кувандыка Оренбургской области.


Слайд 1

Кристаллы – вещества, в которых мельчайшие частицы (атомы, ионы или молекулы) «упакованы» в определенном порядке. В результате при росте кристаллов на их поверхности самопроизвольно возникают плоские грани, а сами кристаллы принимают разнообразную геометрическую форму. Каждый, кто побывал в музее минералогии или на выставке минералов, не мог не восхититься изяществом и красотой форм, которые принимают «неживые» вещества.


Слайд 2

Кристаллы – Ярой альпийской зимой лед превращается в камень. Солнце не в силах затем камень такой растопить. Римский поэт Клавдиан Интересно происхождения слова «кристалл» (оно звучит почти одинаково во всех европейских языках). Много веков назад среди вечных снегов в Альпах, на территории современной Швейцарии, нашли очень красивые, совершенно бесцветные кристаллы, очень напоминающие чистый лед. Древние натуралисты так их и назвали – «кристаллос», по-гречески – лед; это слово происходит от греческого «криос» – холод, мороз. Полагали, что лед, находясь длительное время в горах, на сильном морозе, окаменевает и теряет способность таять. Один из самых авторитетных античных философов Аристотель писал, что «кристаллос рождается из воды, когда она полностью утрачивает теплоту».


Слайд 3

Тетраэдр  (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников.     Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер. Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.


Слайд 4

Тетраэдр    Более трехсот лет отделяют нас от того момента, когда гамбургский алхимик Геннинг Бранд открыл новый элемент – фосфор. Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень, с помощью которых старики молодеют, больные выздоравливают, а неблагородные металлы превращаются в золото. В ходе одного из опытов он выпарил мочу, смешал остаток с углем, песком и продолжил выпаривание. Вскоре в реторте образовалось вещество, светившееся в темноте. Фосфорноватистая кислота Н3РО2 Молекула имеет форму тетраэдра с атомом фосфора в центре, в вершинах тетраэдра находятся два атома водорода, атом кислорода и гидроксогруппа. Кристаллы белого фосфора образованы молекулами Р4 . Такая молекула имеет вид тетраэдра.


Слайд 5

Тетраэдр    Кристаллическая решётка метана имеет форму тетраэдра. Метан  горит бесцветным пламенем. С воздухом образует взрывоопасные смеси. Используется как топливо. Молекулы зеркальных изомеров молочной кислоты также являются тетраэдрами.


Слайд 6

Тетраэдр    Элементарная ячейка кристалла алмаза представляет собой тетраэдр, в центре и четырех вершинах которого расположены атомы углерода. Атомы, расположенные в вершинах тетраэдра, образуют центр нового тетраэдра и, таким образом, также окружены каждый еще четырьмя атомами и т.д. Все атомы углерода в кристаллической решетке расположены на одинаковом расстоянии (154 пм) друг от друга. Строение решетки алмаза


Слайд 7

Куб (гексаэдр)  (от греческого hex — шесть и hedra — грань) - правильный многогранник, составленный из 6 квадратов. Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят  9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра ( таковых плоскостей 6), либо через середины противоположных ребер (таких - 3).


Слайд 8

Куб (гексаэдр)   КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ПОВАРЕННОЙ СОЛИ. Маленькие шарики – ионы натрия, большие – ионы хлора. Все кристаллы поваренной соли имеют одинаковую кубическую форму.


Слайд 9

Куб (гексаэдр)   Форму  куба имеют кристаллические решётки многих металлов (Li, Na, Cr, Pb, Al, Au, и другие)


Слайд 10

Октаэдр (от греческого okto – восемьи hedra – грань) –правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр обладает симметрией. Три из 9 осей симметрии октаэдра проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии. Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4   вершины октаэдра,   лежащие в одной плоскости. Шесть  плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.


Слайд 11

Шестой элемент периодической системы С (углерод) характеризуется структурой октаэдра.Кристаллы алмаза обычно имеют форму октаэдра. Алмаз (от греческого adamas – несокрушимый) – бесцветный или окрашенный кристалл с сильным блеском в виде октаэдра. Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму октаэдров, ромбододекаэдров, реже — кубов или тетраэдров. Октаэдр


Слайд 12

Шестой элемент периодической системы С (углерод) характеризуется структурой октаэдра. Кристаллы алмаза обычно имеют форму октаэдра. Алмаз (от греческого adamas – несокрушимый) – бесцветный или окрашенный кристалл с сильным блеском в виде октаэдра. Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму октаэдров, ромбододекаэдров, реже — кубов или тетраэдров. Октаэдр


Слайд 13

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) – это правильный многогранник,  составленный из двенадцати равносторонних пятиугольников. Плоскостей симметрии 9 и проходят они либо через противоположные ребра (таковых плоскостей 6), либо через середины противоположных ребер (таких - 3). Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.


Слайд 14

Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов. В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров. Додекаэдр Фуллерены – одна из форм углерода. Они были открыты при попытке моделировать процессы, происходящие в космосе.  Ученым в земных лабораториях удалось синтезировать и исследовать многочисленные производные этих шарообразных молекул. Возникла химия фуллеренов. Ведутся попытки создать на основе фуллеренов материалы для зарождающейся молекулярной электроники.


Слайд 15

Икосаэдр (от греческого ico —  шесть и hedra — грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников. Правильный икосаэдр имеет 15 осей симметрии, каждая из  которых  проходит через  середины противоположных параллельных  ребер. Плоскостей симметрии также 15. .


Слайд 16

Икосаэдр В природе встречаются объекты, обладающие симметрией 5-го порядка. Известны, например, вирусы, содержащие кластеры в форме икосаэдра . Открытие фуллерена, молекула которого С60 также обладает этим типом симметрии, стимулировало интерес к подобным объектам. Г.Хуберт с сотрудниками (H.Hubert ; Аризонский университет, США) синтезировали кристаллы B6O из смеси B и B2O3, которая выдерживалась при температуре 1700oС и давлении от 4 до 5.5 ГПа в течение 30 мин. Образовавшийся субоксид бора имеет ромбоэдрическую кристаллическую решетку с одним из плоских углов при вершине, равным 63.1°. Это значение очень близко к величине угла 63.4°, необходимого для того, чтобы из 20 тетраэдров можно было составить правильный икосаэдр. "Первичные" икосаэдры способны группироваться в более крупные кластеры: центральный икосаэдр окружен 12 такими же частицами, центры которых лежат в вершинах более крупного икосаэдра "второго порядка". Число атомов в таком "сверхкластере" может достигать 1014 .


Слайд 17

Благодарим за внимание! Литература: Винниджер. Модели многогранников. М., 1975. Геометрия: Учеб. для 10-11 кл. общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кардомцев и др.–5-е изд.– М.: Просвещение, 2000. Гросман С., Тернер Дж. Математика для биологов. М., 1983. Кованцов Н.И. Математика и романтика. Киев, 1976. Смирнова И.М. В мире многогранников. М., 1990. Шафрановский И.И. Симметрия в природе. Л., 1988. Web - ресурсы: http://dr-klm.livejournal.com/117917.html http://polyhedron.boom.ru/pages/tetra.htm


×

HTML:





Ссылка: