'

Задачи на проценты.

Понравилась презентация – покажи это...





Слайд 0

Задачи на проценты. Учитель математики Гулевич Ирина Леонидовна МОУ СОШ №38 города Твери.


Слайд 1

Простейшие задачи на проценты. При решении задачи на проценты могут встретиться три случая: 1.Нахождение процентов от данного числа. Найти p% от числа a. I способ: 1) a:100 = a/100 - составляет 1%. 2) a/100p=(ap)/100 – составляют p% II способ: p%=p/100 ap/100=(ap)/100 III способ: a-100% x-p% Составляем пропорцию: a:x=100/p , откуда x=(ap)/100 2. Нахождение числа по его процентам. Найти число p% которого равны b. I способ: 1) b:p=b/p - составляет 1%. 2) b/p100=(b100)/p – составляют 100% II способ: p%=p/100 b:p/100=(b100)/p III способ: b-p% x-100% Составляем пропорцию: b:x=p/100 , откуда x=(b100)/p 3. Нахождение процентного отношения двух чисел. Сколько процентов число a составляет от числа b. I способ: a/b100% II способ: b-100% , откуда x=(a100)/b% a-x%


Слайд 2

1. Зарплата поднялась на 50%. Какова была зарплата до поднятия, если её подняли на 5000 рублей? (Кукушкин А.) 2.Ученик читал книгу. Он прочитал 240 страниц и осталось ещё 260 страниц. Сколько процентов книги ученику осталось прочитать и сколько процентов он уже прочитал? (Суворова А.) 3.За 2 дня убрали урожай с 15% поля. За сколько дней будет убрано 75% этого поля при тех же условиях работы?(Ромашов А.) 4. Из 500 икринок погибло 380. Сколько процентов икринок вывелось? (Долгасова О.) 5.Во всём году каникулы длятся 4 месяца, а остальные учебные дни и выходные, праздники. Каково отношение каникул к учебным дням, выходным и праздникам? Сколько процентов составляют каникулы от всего учебного года? (Помелов О.) 6.В 200г. Йогурта содержание 5г. Жира, 5,8 белка, 31,2г. Углеводов, 14г. Сахарозы. Найдите процентное содержание ингредиентов в 200г. Йогурта. Сколько процентов в нём всего остального? (Мамонтов К.) 7. В 100г. Молока содержится 1,5г. жира, 2,8г. Белка, 4,7г. Углеводов. Сколько этих ингредиентов в процентах? Во сколько раз углеводов и белков больше жира? (Лапешкин С.)


Слайд 3

1. В автобусе 30% всех пассажиров - мужчины. Сколько мужчин в автобусе, если в нём было 60 пассажиров? 2.В гараже 15% всех машин – автобусы. Сколько автобусов было в гараже, если в нём 80 автомашин? 3.В ящике 120кг. Пшена. Сколько пшена осталось в ящике, если из него взяли 65% всего зерна? 4.Надоили 150л. Молока. Сколько молока осталось, если 20% молока отправили в детский сад. 5.В школьном саду 40 фруктовых деревьев. 30% всех деревьев – яблони, 40% - груши, а остальные – вишни. Сколько вишен в саду? 6.В книге 120 страниц. Первый рассказ занимает 35% книги, второй – 45%. Сколько страниц занимает третий рассказ? 7.Турист прошёл 12км. ,что составляет 30% всего пути. Каков весь путь туриста? 8.Рабочий выполнил 43% месячного плана, сделав 129 деталей. Каков его месячный план? 9. Когда от мотка отрезали 15% его длины, то в нём осталось 68 метров. Сколько проволоки было в мотке? 10.На покупку ушло 44% всех денег. Сколько всего было денег, если осталось 1120р. ?


Слайд 4

Элективный курс. 1 блок систематизирует ранее полученные знания по теме « Простейшие задачи на проценты». 2 блок обобщает и систематизирует умения по теме «Основные виды задач на проценты и способы их решения». Первые два блока доступны детям, не имеющим хорошей математической подготовки. 3 блок представляет собой разбор и решение задач для подготовки к ЕГЭ и экзаменам в ВУЗы. На изучение трёх блоков отводится 15 часов.


Слайд 5

Тематическое планирование


Слайд 6

Задача. Морская вода содержит 8% (по массе) соли. Сколько килограммов пресной воды нужно добавить к 30 кг. морской воды, чтобы содержание соли в последней составило 5%? Пусть x кг. – масса пресной воды, которую необходимо добавить к имеющейся морской процентное содержание соли в пресной воде равно 0. 5x=30 ? 3 x=18 Ответ: 18


Слайд 7

Решение задач на удаление вещества a из раствора. Задача. Свежие грибы содержат по массе 90% воды, а сухие -12%. Сколько получится сухих грибов из 22 кг. свежих? Решение. Пусть x кг. – масса грибов, которые получатся при сушке. 5 Отношение 5/39 показывает отношение масс частей оставшегося и удалённого растворов. Согласно нашим обозначениям мы получим x сухих грибов, значит удалённая жидкость составляет (22-x)кг. Получаем уравнение 39x=5(22-x). x=2,5 90


Слайд 8

Задача. Сплав олова с медью весом 12 кг содержит 45% меди. Сколько чистого олова нужно добавить чтобы получить сплав содержащий 40% меди. Пусть x – масса олова которое необходимо добавить к имеющемуся сплаву. 55% 5 Составим и решим уравнение:8x=12 x=1,5 Ответ: 1,5 кг 100-40 100-45 Упростить разделив на 5


Слайд 9

Задача. Вычислите массу сплава и процентное содержание серебра в сплаве с медью, зная что сплав его с 3 кг чистого серебра, получит сплав, содержащий 90% серебра, а сплавив его с двумя кг сплава содержащего 90% серебра получат сплав с 84 – процентной массовой доли серебра. Пусть x – масса сплава, а p% - процентное содержание серебра в сплаве. Рис. 1 Рис. 2 84 2 x(90-p)=30 x=3 x(84-p)=12 p=80 Ответ: 3 кг, 80%.


Слайд 10

Задачи на смешивание двух растворов. Задача 1. Имеется два раствора: первый с процентным содержанием вещества A , равным p%, и второй с процентным содержанием этого вещества равным q% . В каком соотношении нужно взять данные растворы чтобы получить новый раствор с процентным содержанием указанного вещества, равным k%. Процентное содержание вещества A в первом растворе. Процентное содержание вещества A во втором растворе. Процентное содержание вещества A которое необходимо получить в новом растворе. Масса необходимого количества первого раствора. Масса необходимого количества второго раствора.


×

HTML:





Ссылка: