'

Нейронные сети в медицине

Понравилась презентация – покажи это...





Слайд 0

Нейронные сети в медицине StatSoft Russia


Слайд 1

Основные идеи нейросетевых методов анализа Простота и однородность отдельных элементов - «нейронов» Все основные свойства сети определяются структурой связей Избыточность системы гарантирует ее надежность как целого Связи формируются по неявным правилам в процессе «обучения»


Слайд 2

Примеры искусственных нейронных сетей


Слайд 3

Особенности нейросетевого подхода к анализу данных Предлагает стандартный способ решения многих нестандартных задач. Явное описание модели заменяется созданием «образовательной среды». Приводит к успеху там, где отказывают традиционные методы и трудно создать явный алгоритм.


Слайд 4

Для практического здравоохранения особый интерес представляют экспертные системы для диагностики заболеваний


Слайд 5

Примеры применения нейронных сетей в медицине Выявление атеросклеротических бляшек с помощью анализа флюоресцентных спектров. Диагностика заболеваний периферических сосудов. Диагностика инфаркта миокарда. Диагностика клапанных шумов сердца с помощью анализа акустических сигналов. Распознавание психических симптомов.


Слайд 6

Экспертная система для лечения артериальной гипертонии (Италия) Модуль 1 Модуль 2 Модуль 3 Почасовые измерения давления Возраст и пол Характеристики состояния Характеристики лекарственных препаратов Структура почасового приема препаратов Другие клинические данные


Слайд 7

Определение накопленной дозы радиоактивного облучения (Красноярская мед. академия) Классификация на 4 группы по величине накопленной дозы облучения 35 входных параметров Естественная Слабая Средняя Сильная Сеть обучалась на данных о пациентах, работающих в атомной промышленности. Со 100% правильностью такая сеть классифицирует состояние людей, в том числе и тех, кто не работает в данной отрасли.


Слайд 8

Этапы нейросетевого анализа Исследование взаимосвязи переменных и понижение размерности Построение и обучение сетей разных типов Сравнение качества сетей и их статистических характеристик


Слайд 9

Понижение размерности: отбор входных признаков Штраф за элемент, число популяций и поколений битовых строк Генетический алгоритм, пошаговое включение и исключение признаков


Слайд 10

Понижение размерности: автоассоциативные сети Новые входные переменные для нейросетевой модели


Слайд 11

Задача классификации состояния больных с ишемической болезнью


Слайд 12

Нейронная сеть для диагностики развития ишемической болезни По набору показателей (48 переменных), как номинальных (например, «слабая-умеренная-сильная боль»), так и непрерывных (например, артериальное давление или возраст), классифицируется состояние пациентов с ишемической болезнью сердца. Номинальные переменные Непрерывные переменные


Слайд 13

Результаты классификации и анализ чувствительности Все наблюдения классифицированы правильно Анализ чувствительности позволяет утверждать, что одним из важнейших факторов риска является привычка к курению.


Слайд 14

Задача диагностики онкологического заболевания


Слайд 15

Нейронные сети для диагностики онкологического заболевания Сеть на радиальных базисных функциях Многослойный персептрон


Слайд 16

Результаты классификации Многослойный персептрон: 100% наблюдений классифицировано правильно Радиальные базисные функции: 95% наблюдений классифицировано правильно


Слайд 17

Настройка сети


Слайд 18

Библиотеки функций пакета STATISTICA Neural Networks для построения, обучения и работы нейронных сетей позволяют эффективно встраивать нейросетевые модули в разрабатываемые экспертные системы для прогнозирования и диагностики заболеваний


×

HTML:





Ссылка: