'

Теорема Пифагора

Понравилась презентация – покажи это...





Слайд 0

Теорема Пифагора Презентацию подготовили : Матросов Алексей 552 группа, Дорофеева Анна 552 группа. КГПУ сентябрь 2004.


Слайд 1

Содержание Формулировка теоремы. Доказательство. Формулировка обратной теоремы. Следствия из теоремы. Пифагоровы треугольники. Египетский треугольник. Различные виды доказательства теоремы. Литература.


Слайд 2

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Формулировка теоремы. a b c


Слайд 3

Доказательство. a b c c c c a a a b b b


Слайд 4

Формулировка обратной теоремы Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.


Слайд 5

Следствия из теоремы В прямоугольном треугольнике любой из катетов меньше гипотенузы. Косинус любого острого угла меньше 1. Если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше.


Слайд 6

Пифагоров треугольник Прямоугольные треугольники , у которых длины сторон выражаются целыми числами, называются пифагоровыми. Можно доказать, что катеты a, b и гипотенуза c таких треугольников выражаются формулами a=2m*n, b=m^2-n^2, где m и n – любые натуральные числа ( m>n ).


Слайд 7

Египетский треугольник Землемеры Древнего Египта для построения прямого угла пользовались следующим приемом. Бечевку узлами делили на 12 равных частей и концы связывали. Затем бечевку растягивали на земле так, что получался треугольник со сторонами 3, 4 и 5 делений. Угол треугольника, противолежащий стороне с 5 делениями, был прямой. ( Почему? ) В связи с указанным способом построения прямого угла треугольник со сторонами 3, 4 и 5 единиц иногда называют египетским.


Слайд 8

Различные виды доказательства теоремы В наши дни известно несколько десятков различных доказательств теоремы Пифагора. Одни из них основаны: На разбиении квадратов На дополнении до равных фигур На том, что высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на два подобных ему треугольников


Слайд 9

Литература Энциклопедический словарь юного математика. Геометрия 7-9 ( Атанасян Л. С.) Геометрия 7-11 ( Погорелов А. В.)


×

HTML:





Ссылка: