'

«ДОЛИ И ЧАСТИ»

Понравилась презентация – покажи это...





Слайд 0

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа «Финист» Ворошиловского района г. Ростова-на-Дону ОБУЧАЮЩИЙ МОДУЛЬ ПО МАТЕМАТИКЕ ДЛЯ 6 КЛАССА «ДОЛИ И ЧАСТИ» Автор: Б.И. Вольфсон


Слайд 1

Цели работы: 1. Ввести понятия умножения и деления числа на дробь, установив связь этих действий с вычислением части данного числа и восстановлением значения числа по его части и соответствующей ей дроби. 2. Изучить различные типы задач на части. 3. Разработать «опорный сигнал», способствующий решению простейших типовых задач на части.


Слайд 2

ПРОБЛЕМА: ? В русском языке слово «умножить» означает «увеличить», а слово «разделить» означает «уменьшить». Так и происходит, когда мы умножаем или делим данное число m на натуральное число n. ? Однако произведение (т.е. результат умножения) числа m на правильную дробь p/q меньше, чем число m, а частное от деления числа m на правильную дробь p/q больше, чем число m. ? Мы хотим разобраться в этом противоречии, которое смущало еще средневековых математиков.


Слайд 3

Исторически понятие произведения данного числа m на натуральное число n возникло как обобщение понятия суммы n слагаемых, каждое из которых равно m: Произведение данного числа m на натуральное число n Таким образом, для того, чтобы умножить m на n, нужно взять число m в качестве слагаемого n раз, т.е. результат увеличится в n раз. n слагаемых m? n = m+…+m .


Слайд 4

Произведение данного числа m на обыкновенную дробь p/q Эту операцию мы связываем с вычислением «пэ-кутой» части от числа m. Как это сделать на практике? Для этого необходимо разделить число 24 на 8 равных частей и взять 5 из них. Рассмотрим конкретный пример. Пусть требуется найти 5/8 частей от числа 24.


Слайд 5

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 24 15 5/8 Проиллюстрируем вычисление 5/8 частей от числа 24 графически. Изобразим число 24 в виде прямоугольника, разделим его на 8 равных частей, каждая из которых составляет 1/8 часть числа 24 и равна 24 : 8 = 3. Выделим пять восьмых частей числа 24. Они составят 3 ? 5 =15.


Слайд 6

Анализ: Чтобы решить эту задачу, необходимо, как было показано выше, найти 5/8 частей от числа 24. Задача №1. Найти произведение данного числа 24 на обыкновенную дробь 5/8. Решение. Вывод: Мы убеждаемся, что при умножении числа 24 на дробь 5/8 получается число 15, которое меньше, чем 24. Примечание. Оформляя решение, мы учитывали, что двоеточие и дробная черта являются равноправными знаками деления.


Слайд 7

Анализ: Мы определили умножение данного числа на дробь как нахождение части числа, соответствующей данной дроби. Очевидно, что справедливо и обратное, т.е., например, чтобы найти 5/8 частей от числа 24, нужно умножить 24 на дробь 5/8. Задача №2. Найти 5/8 частей от числа 24. Решение. Ответ: 5/8 частей числа 24 равны 15.


Слайд 8

Определение произведения двух дробей Мы уже выяснили, что для умножения числа m на дробь p/q необходимо разделить m на знаменатель q и умножить на числитель p: Если число m также является дробью вида k/l, то его произведение на дробь p/q примет следующий вид:


Слайд 9

Частное от деления данного числа m на обыкновенную дробь p/q Рассмотрим конкретный пример. Пусть требуется найти число М, 3/7 части которого равны 12. Эту операцию мы связываем с восстановлением значения числа М, для которого m является его «пэ-кутой» частью. 1) Для решения этой задачи необходимо разделить число 12 на 3 равные части. При этом мы узнаем, чему равна одна седьмая часть искомого числа: 12 : 3 = 4. 2) Все число М состоит из семи седьмых частей, поэтому М = 4 ? 7 = 28. Итак,


Слайд 10

Выводы: 1. В результате деления числа 12 на правильную дробь 3/7 получилось число 28, которое больше, чем 12. 2. Правило деления числа m на дробь p/q: 3. Правило деления дроби m/n на дробь p/q: 4. Для того, чтобы восстановить число М, если известно, что «пэ-кутая» часть этого числа равна m, необходимо разделить m на дробь p/q:


Слайд 11

Опорный сигнал «Задачи на части» Число М Часть числа: m Остаток: r Какую часть числа взяли: p/q Какую часть числа осталась: s/q 1 1. m =M? p/q; M =m : (p/q); p/q = m/M. 2. r =M? s/q; M =r : (s/q); s/q = r/M. 3. m = M – r; r = M – m; M = m + r. 4. p/q + s/q = 1; p/q = 1 – s/q; s/q = 1 – p/q.


Слайд 12

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ НА ЧАСТИ


Слайд 13

Задача №3. Масса медно-никелевого сплава M=7,7 кг. Найдите массу меди m и массу никеля r в отдельности, если масса меди составляет p/q = 5/11 частей от массы сплава. Какую часть (s/q) массы сплава составляет масса никеля? Краткое условие Дано: М = 7,7 кг; p/q = 5/11. Найти: m, r, s/q. Решение. 2) r = M – m = 7,7 – 3,5 = 4,2 (кг); 3) s/q = r : M = 4,2 : 7,7 = 6/11. Проверка: p/q + s/q = 5/11 + 6/11 =11/11 = 1. Ответ: m = 3,5 кг; r = 4,2 кг; s/q = 6/11. M 1


Слайд 14

Решение. M 1 Задача №4. Найдите массу медно-никелевого сплава M и массу меди m, если масса меди составляет p/q = 5/11 частей от массы сплава, а масса никеля равна r = 4,2 кг. Какую часть (s/q) массы сплава составляет масса никеля? Краткое условие Дано: r = 4,2 кг; p/q = 5/11. Найти: M, m, s/q. 1) s/q = 1 – p/q = 1 – 5/11 = 6/11; 3) m = M – r = 7,7 – 4,2 = 3,5 (кг). Проверка: m : M = 3,5 : 7,7 = 5/11 = p/q. Ответ: M = 7,7 кг; m = 3,5 кг; s/q = 6/11.


Слайд 15

Решение. M 1 Задача №5. Найдите массу медно-никелевого сплава M, если масса меди m=3,5 кг, масса никеля r = 4,2 кг. Какую часть (p/q) масса меди и какую часть (s/q) масса никеля составляют от массы сплава? Краткое условие Дано: m = 3,5 кг; r = 4,2 кг. Найти: M, p/q, s/q. 1) M = m + r = 3,5 + 4,2 = 7,7 (кг); Ответ: M = 7,7 кг; p/q = 5/11; s/q = 6/11. Проверка: p/q + s/q = 5/11 + 6/11 = 1. 2) p/q = m : M = 3,5 : 7,7 = 5/11; 3) s/q = r : M = 4,2 : 7,7 = 6/11.


Слайд 16

Список параметров для конструирования задач на части и варианты условий, получаемых из их комбинаций


Слайд 17

Списки параметров для конструирования задач на части


Слайд 18

Пример решения задачи о трехдневном пути Задача № 16. Турист прошел в 1-й день 9/25 всего пути, во 2-й день — на 6 км больше, чем в 1-й день. Чему равен весь путь (S), и сколько километров было пройдено в 1-й и 2-й дни пути отдельно (S1 и S2), если в 3-й день турист прошел S3 =15 км? Решение. 1) Примем за х путь S, пройденный туристом за 3 дня. Тогда S1 = 9/25 x, S2 = 9/25 x + 6. 2) Так как S = S1 + S2 + S3 , то можем составить уравнение: x = 9/25 x + (9/25 x + 6) + 15, решая которое, получаем: х = 75. 3) Итак, S = 75 км, S1 = 9/25 ? 75 = 27 (км), S2 = 27 + 6 = 33 (км). Проверка: S1 + S2 + S3 = 27 + 33 + 15 = 75 (км) = S. Ответ: S = 75 км, S1 = 27 км, S2 = 33 км. S1 S2 S3 S


Слайд 19

Задачи для самостоятельного решения Ответы: 1) 85 км, 35 км, 30 км, 20 км. 2) 28 км, 32 км, 24 км. 3) 26 км, 32 км, 28 км. Задача № 17. Турист прошел в 1-й день 7/17 трехдневного пути, во 2-й день — 6/7 пути, пройденного в 1-й день. Чему равен весь путь (S), и сколько километров было пройдено в 1-й, 2-й и 3-й дни отдельно (S1 , S2 и S3), если в 3-й день турист прошел на 10 км меньше, чем во 2-й? Задача № 18. Турист прошел в 1-й день на 4 км меньше, чем во 2-й день, а в 3-й день — 2/5 пути, пройденного за два первых дня вместе. Сколько километров было пройдено в 1-й, 2-й и 3-й дни пути отдельно (S1 , S2 и S3), если всего за три турист прошел путь S = 84 км? Задача № 19. Турист прошел во 2-й день пути на 6 км больше, чем в 1-й день, а в 3-й день — 7/8 пути, пройденного во 2-й день. Сколько километров было пройдено в 1-й, 2-й и 3-й дни пути отдельно (S1 , S2 и S3), если всего за три турист прошел путь S = 86 км?


Слайд 20

3. Вольфсон Б. И. Формирование семейств модифицируемых многопараметрических задач. // Развивающие программы и методики работы с одаренными детьми. Сборник программ лауреатов 1 областного конкурса программ и методик работы с одаренными детьми. — Ростов-на-Дону, 2000. —160 с. С. 46 – 58. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ Эрдниев П.М. Преподавание математики в школе. (Из опыта обучения методом укрупненных упражнений). — М.: «Просвещение», 1978. — 304 с. 2. Б.И. Вольфсон, В.М. Поркшеян, Л.И. Резницкий, С.М. Хартиев. Готовимся к экзамену по математике: Пособие-репетитор для старшеклассников и абитуриентов. — 4-е изд., доп. и перераб. — Ростов-на-Дону: Феникс, 2009. — 462 с. С. 19 – 26, 188 – 218.


×

HTML:





Ссылка: