'

СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ

Понравилась презентация – покажи это...





Слайд 0

СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ


Слайд 1

Статистический показатель Это количественная характеристика социально-экономического явления или процесса в условиях качественной определенности. Качественная определенность показателя заключается в том, что он непосредственно связан с внутренним содержанием изучаемого явления или процесса, его сущностью. Количественное значение статистического показателя является его величиной.


Слайд 2

Статистический показатель Абсолютные Относительные Средние


Слайд 3

Абсолютный показатель отражает физические размеры изучаемого явления именованный измеряются в конкретных единицах может быть положительным или отрицательным


Слайд 4

Абсолютный показатель Натуральные Стоимостные Трудовые Индивидуальные Суммарный Моментный Интервальный


Слайд 5

Относительный показатель обобщающий показатель, который дает числовую меру соотношения двух сопоставляемых абсолютных величин и определяется как результат деления одной абсолютной величины на другую


Слайд 6

Цепной относительный показатель – если база сравнения переменная Базисный относительный показатель – если база сравнения постоянная


Слайд 7

Относительный показатель


Слайд 8

Относительный показатель динамики – темп роста Характеризует изменение уровня развития какого-либо явления во времени


Слайд 9


Слайд 10


Слайд 11


Слайд 12


Слайд 13

Относительный показатель выполнения плана и планового задания ; . ОПП*ОПРП=ОПД относительные показатели плана относительные показатели реализации плана Взаимосвязь показателей


Слайд 14

Оборот торговой фирмы в 2002 г. составил 2,0 млн. руб. На 2003 год запланировано достичь оборота 2,8 млн. руб. Фактически в 2003 г оборот составил 2,6 млн. руб. ; . относительные показатели плана относительные показатели реализации плана ОПП = 2,8 / 2,0 * 100 % = 140 % ОПРП = 2,6 / 2,8 * 100 % = 92,9 % ОПД = 1,40 * 0,929 = 2,6 / 2,0 = 1,3 (130 %)


Слайд 15

Относительные величины структуры Характеризуют доли, удельные веса составных элементов в общем итоге


Слайд 16


Слайд 17


Слайд 18

Относительный показатель координации Характеризует отношение частей данной совокупности к одной из них, принятой за базу сравнения


Слайд 19


Слайд 20


Слайд 21

Относительный показатель сравнения Характеризует сравнительные размеры одноименных абсолютных величин, относящихся к одному и тому же периоду либо моменту времени, но к различным объектам или территориям


Слайд 22


Слайд 23


Слайд 24

Относительный показатель интенсивности Характеризует степень распределения или развития данного явления в той или иной среде


Слайд 25

На конец 2000 года численность безработных составила 8798,25 тыс.чел.


Слайд 26

Средний показатель обобщающий показатель, характеризующий типический уровень явления


Слайд 27

Средние Степенные Структурные Арифметическая Гармоническая Геометрическая Мода Квадратическая Медиана


Слайд 28

Степенные средние Простая средняя где Xi - варианта (значение) осредняемого признака; m - показатель степени средней; n - число вариант. Взвешенная средняя где Xi - варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта; m - показатель степени средней; fi - частота, показывающая, сколько раз встречается i-e значение осредняемого признака.


Слайд 29

Виды степенных средних


Слайд 30

Пример


Слайд 31

Средний возраст Простая средняя Взвешенная средняя


Слайд 32

Структурные средние Мода наиболее часто повторяющееся значения признака где ХMo - нижнее значение модального интервала; mMo - число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении); m Mo-1 - то же для интервала, предшествующего модальному; m Mo+1 - то же для интервала, следующего за модальным; h - величина интервала изменения признака в группах


Слайд 33

Структурные средние Медиана величина признака, которая делит упорядоченную последовательность его значений на две равные по численности части где XMe - нижняя граница медианного интервала; hMe - его величина; ?m?2- половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении); SMe-1 - сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; mMe - число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).


Слайд 34

Показатели вариации: частотные показатели; показатели распределения – структурные средние; показатели степени вариации; показатели формы распределения.


Слайд 35

Частотные показатели вариации абсолютная численность i-той группы – частота fi относительная частота – частость di кумулятивная (накопленная) частота Si (частость Sd) характеризует объем совокупности со значениями вариантов, не превышающих Xi. S1=f1, S2=f1+f2, S3=f1+f2+f3; плотность частоты (частости) представляет собой частоту, приходящуюся на единицу интервала, qi=fi/hi или qi=di/hi где hi – величина i-того интервала.


Слайд 36

Показатели вариации:


Слайд 37

Показатели вариации:


Слайд 38

Дисперсия: Дисперсия постоянной величины равна 0. Если все значения вариантов признака X уменьшить на постоянную величину А, то дисперсия не изменится. Если все значения вариантов Х уменьшить в К раз, то дисперсия уменьшится в К2 раз. На практике часто используют более простую формулу для расчета дисперсии: 5.При малом числе наблюдений (< 30):


Слайд 39

Показатели относительного рассеивания :


Слайд 40

Пример 1


Слайд 41

Пример 1


Слайд 42

Пример 1


Слайд 43

Пример 1


Слайд 44

Пример 1


Слайд 45

Пример 1


Слайд 46

Пример 1


Слайд 47

Показатели вариации (пример 1)


Слайд 48

Пример 2


Слайд 49

Пример 2


Слайд 50

Пример 2


Слайд 51

Пример 2


Слайд 52

Пример 2


Слайд 53

Пример 2


Слайд 54

Пример 2


Слайд 55

Пример 2


Слайд 56

Показатели вариации (пример 2)


Слайд 57

Графики


Слайд 58

Графическое определение моды Гистограмма Частота (f) Признак (X)


Слайд 59

Графическое определение моды Кумулята Частота (f) Признак (X)


×

HTML:





Ссылка: