'

МОУ «ООШ с.Никольское Духовницкого района Саратовской области» Теорема Пифагора

Понравилась презентация – покажи это...





Слайд 0

Работу выполнил ученик 8 класса Самойлов Дмитрий Руководитель: Бурукина Н.Н. 2011г. МОУ «ООШ с.Никольское Духовницкого района Саратовской области» Теорема Пифагора


Слайд 1

Теорема Пифагора Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век.


Слайд 2

« Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах» « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».  Формулировка теоремы Во времена Пифагора теорема звучала так: или


Слайд 3

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».     Современная формулировка


Слайд 4

Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.). Доказательства теоремы


Слайд 5

Самое простое доказательство Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c. c a


Слайд 6

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c. a c a c В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c. a c Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c.


Слайд 7

Доказательство Евклида Дано: ABC-прямоугольный треугольник Доказать: SABDE=SACFG+SBCHI


Слайд 8

Доказательство: Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G.


Слайд 9

Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно SPQEA=2SACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, SFCAG=2SGAB Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.


Слайд 10

Алгебраическое доказательство Дано: ABC-прямоугольный треугольник Доказать: AB2=AC2+BC2                                            Доказательство: 1) Проведем высоту CD из вершины прямого угла С. 2) По определению косинуса угла соsА=AD/AC=AC/AB, отсюда следует AB*AD=AC2. 3) Аналогично соsВ=BD/BC=BC/AB, значит AB*BD=BC2. 4) Сложив полученные равенства почленно, получим: AC2+BC2=АВ*(AD + DB) AB2=AC2+BC2. Что и требовалось доказать.


Слайд 11

Геометрическое доказательство Дано: ABC-прямоугольный треугольник Доказать: BC2=AB2+AC2 Доказательство: 1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC. Затем опустим перпендикуляр ED к отрезку AD, равный отрезку AC, соединим точки B и E. 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников: SABED=2*AB*AC/2+BC2/2 3) Фигура ABED является трапецией, значит, её площадь равна: SABED= (DE+AB)*AD/2. 4) Если приравнять левые части найденных выражений, то получим: AB*AC+BC2/2=(DE+AB)(CD+AC)/2 AB*AC+BC2/2= (AC+AB)2/2 AB*AC+BC2/2= AC2/2+AB2/2+AB*AC BC2=AB2+AC2.    Это доказательство было опубликовано в 1882 году Гэрфилдом.


Слайд 12

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии. Значение теоремы Пифагора


Слайд 13

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, «Пифагоровы штаны на все стороны равны», рисовали карикатуры.


Слайд 14

Литература: Учебник геометрия 7-9 учеб. Для общеобразоват. Уч-Г36 реждение /(Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.).-19-е изд.-М.: Просвещение, 2009.-384с.: ил.-lSBN 978-5-09-021136-9 Интернет ресурсы:


×

HTML:





Ссылка: