'

Лист Мёбиуса

Понравилась презентация – покажи это...





Слайд 0

Лист Мёбиуса Предметная область: математика Творческая работа учащихся 6 класса МОУ «СОШ с.Петропавловка Саратовской области Дергачёвского района» Бычкова Андрея Павловича, Трушиной Екатерины Владимировны, Фугаровой Виктории Викторовны, Байсакаловой Айгерем Ароновны, Шикиной Любови Николаевны. Руководитель: Кутищева Нина Семёновна 1


Слайд 1

Содержание 2 Титульный лист ……………………….. 1 Предисловие ……………………… 3-6 Исследовательская работа ………7-20 Вывод ………………………………… 21 Отзыв руководителя ………………… 22 Источники ……………………………… 23 Всего слайдов: 23


Слайд 2

Предисловие Многие знают, что такое лента (лист) Мёбиуса. Тем, кто ещё не знаком с удивительным листом, который относится к «математическим неожиданностям», мы предлагаем вместе с нами провести исследование и окунуться в светлое чувство познания. 3


Слайд 3

Таинственный и знаменитый лист Мёбиуса (иногда говорят : лента Мёбиуса) придумал в 1858г. немецкий геометр Август Фердинанд Мёбиус (1790-1868), ученик «короля математиков» Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров Х1Х в. В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых – лист Мёбиуса. 4


Слайд 4

Лист Мёбиуса – один из объектов области математики под названием «топология» (по-другому – «геометрия положений»). Удивительные свойства листа Мёбиуса – он имеет один край, одну сторону, – не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер. Изучением таких свойств занимается топология. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые. 5


Слайд 5

Рассказывают, что открыть свой «лист» Мёбиусу помогла служанка, сшившая однажды неправильно концы ленты. Легенда 6


Слайд 6

Увлекательное исследование Запаситесь несколькими листами обычной белой бумаги, клеем и ножницами. ? 7


Слайд 7

Берем бумажную ленту АВСD. Прикладываем ее концы АВ и СD друг к другу и склеиваем. Но не как попало, а так, чтобы точка А совпала с точкой D, а точка B с точкой С. А В С D 8


Слайд 8

Получим такое перекрученное кольцо 9


Слайд 9

? Зададимся вопросом: сколько сторон у этого куска бумаги? Две, как у любого другого? А ничего подобного. У него ОДНА сторона. Не верите? Хотите – проверьте: попробуйте закрасить это кольцо с одной стороны. 10


Слайд 10

Красим, не отрываемся, на другую сторону не переходим. Красим... Закрасили? А где же вторая, чистая сторона? Нету? Ну то-то. 11


Слайд 11

Теперь второй вопрос. Что будет, если разрезать обычный лист бумаги? Конечно же, два обычных листа бумаги. Точнее, две половинки листа. А что случится, если разрезать вдоль посередине это кольцо (это и есть лист Мёбиуса, или лента Мёбиуса) по всей длине? Два кольца половинной ширины? А ничего подобного. А что? Не скажем. Разрежьте сами. ? 12


Слайд 12

А вот что получилось у нас Лента перекручена два раза 13


Слайд 13

Теперь сделайте новый лист Мёбиуса и скажите, что будет, если разрезать его вдоль, но не посередине, а ближе к одному краю? То же самое? А ничего подобного! ? 14


Слайд 14

А вот что получилось у нас 15


Слайд 15

А если на три части? Три ленты? А ничего подобного! ? 16


Слайд 16

Получим два сцепленных кольца. Одно из них вдвое длиннее исходного и перекручено два раза. Второе- лист Мёбиуса, ширина которого втрое меньше, чем у исходного. 17


Слайд 17

Человечек - перевертыш. Вырежьте бумажного человечка и отправьте его вдоль пунктира, идущего посередине листа Мёбиуса. 18


Слайд 18

Он вернулся к месту старта. Но в каком виде! В перевернутом! А чтобы он вернулся к старту в нормальном положении, ему нужно совершить ещё одно «круголистное » путешествие. Проверьте! 19


Слайд 19

Исследуйте дальше эту поразительную (и тем не менее совершенно реальную) одностороннюю поверхность, и вы получите море удовольствия. Это очень успокаивает расстроенные трудными уроками нервы, уверяем вас. Что может быть полезнее Чистого Знания? 20


Слайд 20

Вывод Лист Мёбиуса – удивительный феномен. Его можно исследовать до бесконечности, мы рассмотрели лишь некоторые его свойства. Надеемся, что мы вас заинтересовали и вы продолжите исследования этого непредсказуемого листа. 21


Слайд 21

Отзыв руководителя Данная презентация была сделана для урока математики по теме «Занимательная математика», также её можно использовать в кружковой работе. Учащиеся провели исследовательскую работу, результатом которой была данная презентация. В ходе работы над презентацией авторы изучили интернет ресурсы на предложенных мной сайтах, провели практические исследования, зафиксировали их на фотографиях с помощью руководителя. В результате работы над презентацией учащиеся совершенствовали навыки работы с интернет ресурсами, научились анализировать их и выбирать главное, проявили творческий подход к оформлению презентации. Работая группой, они учились взаимодействию с коллективом, ответственности за порученное дело. В итоге получилась интересная и познавательная презентация. 22


Слайд 22

Используемая литература: Внеклассная работа по математике В.А.Гусев, А.И.Орлов, А.Л.Розенталь. Математический цветник Ю.А.Данилова. Краткий очерк истории математики. Д. Я. Стройк. Перевод с немецкого и дополнения И.Б.ПОГРЕБЫССКОГО. Ресурсы: http://slovari.yandex.ru/dict/bse/article/00046/48100.htm http://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82_%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81%D0%B0 http://www.genon.ru/GetAnswer.aspx?qid=e2ab6eb5-5fb6-4fc6-b1a4-6ee7961a0dc1 www.vokrugsveta.ru http://shkolazhizni.ru/archive/0/n-13219/ http://www.univer.omsk.su/omsk/Edu/Math/mmebius.htm 23


×

HTML:





Ссылка: