'

ТЕОРИЯ ВЕРОЯТНОСТЕЙ НА ЕГЭ ПО МАТЕМАТИКЕ

Понравилась презентация – покажи это...





Слайд 0

ТЕОРИЯ ВЕРОЯТНОСТЕЙ НА ЕГЭ ПО МАТЕМАТИКЕ Бердникова Е.Л. МБОУ СОШ №97 г. Кемерово


Слайд 1

Вероятность события А равна отношению числа благоприятных исходов к общему числу исходов.


Слайд 2

В фирме такси в данный момент свободно 15 машин:2 красных,9 желтых и 4 зелёных. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет жёлтое такси. Всего имеется 15 машин, то есть к заказчице приедет одна из пятнадцати. Желтых - девять, и значит, вероятность приезда именно желтой машины равна 9/15, т.е 0,6. задача решение


Слайд 3

В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах. Очевидно, вероятность вытащить билет без вопроса о грибах равна 23/25, то есть 0,92. задача решение


Слайд 4

Родительский комитет закупил 30 пазлов для подарков детям на окончание учебного года, из них 12 с картинами известных художников и 18 с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным. Задача решается аналогично. Ответ: 0,6. задача решение


Слайд 5

В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая. Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен 5/20 (поскольку из Китая — 5 спортсменок). Ответ: 0,25. задача решение


Слайд 6

Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовет число кратное пяти? 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11... 100 Каждое пятое число из данного множества делится на 5. Значит, вероятность равна 1/5. задача решение


Слайд 7

Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков. 1, 3, 5 — нечетные числа; 2, 4, 6 — четные. Вероятность нечетного числа очков равна 1/2. Ответ: 0,5. задача решение


Слайд 8

Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»? Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет. Как вы думаете, сколько здесь возможных исходов? Бросаем монету. У этого действия два возможных исхода: орел и решка Две монеты — уже четыре исхода: задача решение


Слайд 9

Орел орел Орел решка Решка орел Решка решка Три монеты? Правильно, 8 исходов, так как 2 2 2 = 2? = 8.


Слайд 10

Вот они: Орел орел Орел орел Орел решка Орел решка Орел решка Орел орел Орел решка Решка решка Орел решка Решка решка Орел решка Решка решка Два орла и одна решка выпадают в трех случаях из восьми. Ответ: 3/8.


Слайд 11

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых. Бросаем первую кость — шесть исходов. И для каждого из них возможны еще шесть — когда мы бросаем вторую кость. Получаем, что у данного действия — бросания двух игральных костей — всего 36 возможных исходов, так как 6? = 36. А теперь — благоприятные исходы: 2 6 3 5 4 4 5 3 6 2 Вероятность выпадения восьми очков равна 5/36 ? 0,14. задача решение


Слайд 12

Стрелок попадает в цель с вероятностью 0,9. Найдите вероятность того, что он попадёт в цель четыре раза выстрела подряд. Если вероятность попадания равна 0,9 — следовательно, вероятность промаха 0,1. Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна 0,9 0,9 = 0,81. А вероятность четырех попаданий подряд равна 0,9 0,9 0,9 0,9 = 0,6561. задача решение


Слайд 13

Спасибо за внимание


×

HTML:





Ссылка: