'

Презентация на тему: Моделирование расчетных систем и отражение расчетов в балансе банков

Понравилась презентация – покажи это...





Слайд 0

Презентация на тему: Моделирование расчетных систем и отражение расчетов в балансе банков Кафедра бухгалтерского учета и аудита экономического факультета РГУ Докладчик: к.э.н., доцент В.Ю. Копытин


Слайд 1

Моделирование расчетных систем Кафедра бухгалтерского учета и аудита экономического факультета РГУ Под моделированием понимается изучение каких-либо объектов или процессов не прямо и непосредственно, а через специально созданные отражающие их изображения, образы или описания. Цель моделирования — создание образа, адекватного его физическому оригиналу, то есть такого его описания, благодаря которому проявляются и становятся понятными его основные свойства. Платежная система (payment system) состоит из ряда инструментов, банковских процедур и, как правило, межбанковских систем денежных переводов, которые обеспечивают денежное обращение. Расчетная система (settlement system) — система, используемая для осуществления расчетов по сделкам (т. е. для перевода финансовых инструментов и(или) перечисления денежных средств). Главной целью работы является представление экономических отношений, возникающих при осуществлении расчетов и платежей, методами математического моделирования.


Слайд 2

Расчетные системы Расчет на валовой основе (gross settlement) предполагает, что в соответствии с каждым поручением или требованием проводится отдельная операция посредством соответствующего перечисления средств. Платежи исполняются последовательно по мере их поступления и в соответствии с установленной очередностью обработки. Нетто-расчет (net settlement) — расчет на основе чистой позиции взаимных требований и обязательств, его также называют клиринговым, или неттингом. Неттинг представляет собой расчет нетто-позиций по встречным платежам согласно суммам, отраженным в расчетных документах двух и более участников расчетов на нетто-основе, в соответствии с порядком проведения расчетов.


Слайд 3

Расчетные системы Системы брутто-расчетов различаются по скорости и порядку проведения расчетов. Расчеты на валовой основе могут проводиться непрерывно в течение дня (real-time), а могут осуществляться в заранее определенный период времени (batch). Это определяет деление брутто-расчетных систем на расчеты в режиме реального времени и расчеты с периодической обработкой платежей. Системы нетто-расчетов различаются по способу расчета нетто-позиции требований и обязательств — двухсторонний (bilateral) неттинг и многосторонний (multilateral) неттинг.


Слайд 4

Матричные модели расчетов Определим такие понятия, как матрица–корреспонденция и матрица–расчет (проводка) Квадратная матрица размером m ? m, у которой на пересечении строки, соответствующей участнику расчетов X, и столбца, соответствующему участнику Y, находится единица, а все остальные элементы равны нулю, называется матрицей-корреспонденцией. Матрица-расчет — это произведение суммы расчетной операции на матрицу-корреспонденцию. R (X, Y) = S X,Y · E(X,Y).


Слайд 5

Матричная формула валовых расчетов в режиме реального времени где коэффициентами линейного разложения являются скалярные величины — суммы расчетных операций Si (i = 1, 2, …, n). Представленная матричная формула — является информационно–технологическим образом журнала расчетных операций или системы валовых расчетов в режиме реального времени: в ней суммы операций, определенные на соответствующих корреспонденциях между участниками расчетов, представлены в хронологическом порядке.


Слайд 6

Матричная формула валовых расчетов с периодической обработкой платежей где коэффициентами линейного разложения будут суммы операций сводных проводок: SX,Y (X, Y принадлежат множеству участников расчетов). Представленная матричная формула — является информационно–технологическим образом расчетов за определенный период обработки или системы валовых расчетов с периодической обработкой платежей: в ней суммы операций — это итоговые суммы, определенные на однотипных корреспонденциях между участниками.


Слайд 7

Матричная формула двухстороннего неттинга Пусть R — это матрица обязательств по расчетам, R? = (R)? — транспонированная к ней матрица получаемых платежей или матрица исполнения обязательств, то есть матрица, в которой строки и столбцы переставлены (инвертированы) по отношению к исходной матрице R. Тогда сальдовая матрица ?R будет определена как разность: ?R = R - R? Представленная матричная формула — является информационно–технологическим образом двухстороннего неттинга.


Слайд 8

Векторно - матричная формула многостороннего неттинга Свертывание матриц обязательств и платежей в итоговый столбец достигается умножением справа на единичный вектор e. Преобразование r = R?e сворачивает R в итоговый столбец rоб (вектор обязательств), а преобразование r? = R??e в итоговый столбец rпл (вектор платежей). ?rмн = ?R?e. Представленная векторно-матричная формула — является является информационно–технологическим образом многостороннего неттинга.


Слайд 9

Матричные преобразования расчетных систем Матричные преобразования, которые соответствуют переходам от одной системы расчетов к другой, можно определить следующим образом: 1)     переход от системы валовых расчетов в режиме реального времени к системе валовых расчетов с периодической обработкой платежей осуществляется путем «приведения подобных» (суммированием) матриц расчетных операций за время периода обработки; 2)     для перехода от системы валовых расчетов с периодической обработкой платежей к системе двухстороннего неттинга требуется из матрицы обязательств между участниками расчетов вычесть транспонированную к ней матрицу получаемых участниками платежей; 3)     для перехода от системы двухстороннего неттинга к системе многостороннего неттинга необходимо сальдовую матрицу двухстороннего неттинга умножить на единичный вектор, результатом умножения являются многосторонние нетто-позиции каждого участника расчетов.


Слайд 10

Иллюстрация матричных моделей и преобразований в расчетных системах Предположим, что по условиям задачи за период времени t1 – t2 по данным двадцати трех расчетных документов, которыми обменивались пять участников расчетов (условно обозначаемых A, B, C, D, E), необходимо сформировать числовые выражения следующих моделей расчетных систем: -          валовых расчетов в режиме реального времени; -          валовых расчетов с периодической обработкой платежей; -          двухстороннего неттинга; -          многостороннего неттинга.


Слайд 11

Иллюстрация матричных моделей и преобразований в расчетных системах Запишем числовое выражение формулы валовых расчетов в режиме реального времени, где суммы, указанные в расчетных документах, умножены на соответствующие матрицы-корреспонденции и записаны в хронологическом порядке в течение периода обработки (t1 – t2). Числовое выражение формулы примет следующий вид: Rt1-t2 = 40E(А,B) + 80E(А,C) + 50E(А,D) + 30E(А,Е) + 70E(B,A) + 50E(B,C) + 40E(B,D) + 100E(B,Е) + 110E(C,A) + 40E(C,B) + 90E(C,D) + 60E(C,E) + 100E(D,A) + 120E(А,B) + 70E(D,C) + 140E(D,E) + 130E(E,A) + 20E(E,B) + 170E(E,C) + 30E(E,D) + 90E(A,B) + 190E(D,C) + 80E(B,D). Заметим, что в течение периода обработки участник расчетов A три раза переводит средства участнику B, а участники D и B дважды передают расчетные документы соответственно участникам C и D, в то время как участник расчетов D не осуществляет переводов на участника B.


Слайд 12

Иллюстрация матричных моделей и преобразований в расчетных системах Следовательно, числовое выражение формулы валовых расчетов с периодической обработкой платежей, после приведения подобных матриц расчетных операций (проводок) матрица расчетов будет иметь следующий вид: Rt1-t2 = 250E(А,B) + 80E(А,C) + 50E(А,D) + 30E(А,Е) + 70E(B,A) + 50E(B,C) + 120E(B,D) + 100E(B,Е) + 110E(C,A) + 40E(C,B) + 90E(C,D) + 60E(C,E) + 100E(D,A) + 0E(D,B) + 260E(D,C) + 140E(D,E) + 130E(E,A) + 20E(E,B) + 170E(E,C) + 30E(E,D),


Слайд 13

Иллюстрация матричных моделей и преобразований в расчетных системах или в традиционном матричном представлении: Rt1-t2 =


Слайд 14

Иллюстрация матричных моделей и преобразований в расчетных системах Для того чтобы на основе формулы двухстороннего неттинга получить сальдовую матрицу двухстороннего зачета, необходимо транспонировать полученную матрицу расчетов и вычесть эту транспонированную матрицу из исходной. ?Rt1-t2=Rt1-t2- R? t1-t2


Слайд 15

Иллюстрация матричных моделей и преобразований в расчетных системах На основе сальдовой матрицы двухстороннего неттинга, используя формулу многостороннего неттинга получаем числовое выражение вектора чистых позиций между участниками расчетов: ?rt1-t2 =


Слайд 16

Обзор задачи Обзор приведенного примера показывает, что для осуществления расчетов валовым методом требуется значительно больше средств по сравнению с системами нетто-расчетов. По данным нашей задачи видно, что, например, участнику расчетов А при проведении расчетов валовым способом требуются ликвидные средства в размере 410 единиц, а при проведении расчетов методом многостороннего неттинга он имеет нулевую нетто-позицию. При осуществлении расчетов на основе двухстороннего неттинга между участниками A и B вместо 250 единиц расчетных активов участнику А требуется всего 180, а участник B вообще не затрачивает средств для осуществления двухсторонних расчетов. Кроме этого, средства, необходимые для расчетов между всеми участниками при сравнении системы валовых расчетов и системы многостороннего неттинга расчетов, снижаются с 1900 (сумма обязательств всех участников) единиц расчетных активов до 260.


Слайд 17

Обобщение Рассмотрена система матричных образов и преобразований, которая позволяет методами математического моделирования проводить исследование расчетных систем. Отличительной особенностью этой системы являются компактность представления исходных данных и результатов расчетных операций, а также неалгоритмический способ преобразований расчетных систем. Математический способ представления расчетных взаимоотношений позволяет сформировать единообразное понимание расчетных операций, которое не зависит от социальных, правовых и исторических традиций. Изменения, происходящие в процессе развития платежных систем, являются полезными и эффективными только тогда, когда они однозначно интерпретируются людьми, которые практически реализуют принципы и концепции.


Слайд 18

Схема корреспондентских отношений в бухгалтерском учете банков


Слайд 19

Пример отражения расчетных операций клиентов в бухгалтерском учете банков


Слайд 20

Структурная схема платежной системы на базе банковских карт


Слайд 21

Схема расчетов в электронной платежной системе (интернет-банкинг)


Слайд 22

Вопросы ??? Моделирование расчетных систем и отражение расчетов в балансе банков Кафедра бухгалтерского учета и аудита экономического факультета РГУ


×

HTML:





Ссылка: