'

Тест 2 «Дифференцированное решение рациональных уравнений» Тест 2 «Дифференцированное решение рациональных уравнений» Тест 2 «Дифференцированное решение.

Понравилась презентация – покажи это...





Слайд 0


Слайд 1

Тест № 2 «Дифференцированное решение рациональных уравнений»


Слайд 2

А В С {-1,4; 1} {-1; 1} {1; 1,4} {-1,4; 1,4} {-3; -1} {1; 3} {-1; 3} {-3; 1} {-3;-1;3} {-3; 0; 1} {-3; 1; 3} {0; 1; 3}


Слайд 3

Критерии оценок: Уровень А – оценка «3» Уровень В – оценка «4» Уровень С – оценка «5» При отсутствии правильного ответа – оценка «2»


Слайд 4

Дифференцированная самостоятельная работа. А 1) х3-5х2-6х=0 2) х4-6х2+5=0 В 1) 3у2-2у=2у3-3 2) (х2+2х)2-2(х2+2х)-3=0 С 1) 2х4-18х2=5х3-45х 2) х6-5х5+6х4-х2+5х-6=0


Слайд 5

Домашнее задание №№ 289, 291(в, г), 295(а) №№ 290, 291(а, б), 295(г) №№ 297, 299, 301(а, б)


Слайд 6

Итог урока Решать уравнения, приводимые к квадратным, т.е. уравнения вида a(f(x))2 + bf(x) + c = 0, заменяя f(x) на у. Решать биквадратные уравнения, т.е. уравнения вида ax4 + bx2 + c = 0, заменяя х2 на у. Решать некоторые уравнения высших степеней, используя разложение многочленов на множители, или сводя уравнение к квадратному. Решать дробно-рациональные уравнения, приводя их к целому виду, а затем отбрасывая посторонние корни (если они появились).


Слайд 7

Спасибо за внимание


×

HTML:





Ссылка: