'

Системы счисления

Понравилась презентация – покажи это...





Слайд 0

Системы счисления


Слайд 1

Все есть число", — говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Будем называть такие символы цифрами. Для представления чисел используются непозиционные и позиционные системы счисления.


Слайд 2

Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек.


Слайд 3

Непозиционные системы счисления В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.?     


Слайд 4

Древнеегипетская десятичная непозиционная система счисления. Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки — иероглифы. Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной


Слайд 5

Римская система счисления. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100(С), 500(D) и 1000(М) стали применять первые буквы соответствующих латинских слов (Сentum — сто, Demimille — половина тысячи, Мille — тысяча). При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.         Десятичное число 99 имеет следующее представление: XCIХ = 10+(100-1)+10.


Слайд 6

Алфавитные системы счисления.        Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие. В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита.


Слайд 7

        В алфавитной системе счисления Древней Греции числа 1, 2, ..., 9 обозначались первыми девятью буквами греческого алфавита, например a = 1, b = 2, g = 3 и т.д. Для обозначения чисел 10, 20, ..., 90 применялись следующие 9 букв (i = 10, k = 20, l = 30, m = 40 и т.д.), а для обозначения чисел 100, 200, ..., 900 — последние 9 букв (r = 100, s = 200, t = 300 и т.д.). Например, число 141 обозначалось rma.


Слайд 8

Непозиционные системы счисления имеют ряд существенных недостатков: 1. Существует постоянная потребность введения новых знаков для записи больших чисел. 2. Невозможно представлять дробные и отрицательные числа. 3. Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.


Слайд 9

Позиционные системы счисления Основные достоинства любой позиционной системы счисления — простота выполнения арифметических операций и ограниченное количество символов (цифр), необходимых для записи любых чисел.


Слайд 10

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы. Любая позиционная система счисления характеризуется своим основанием.


Слайд 11

Основание позиционной системы счисления это количество различных знаков или символов, используемых для изображения цифр в данной системе. Основание показывает также, во сколько раз изменяется количественное значение цифры при перемещении ее на соседнюю позицию.


Слайд 12

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем, наименование системы счисления соответствует ее основанию (десятичная, двоичная, пятеричная, восьмеричная, шестнадцатеричная и т. д.). 


Слайд 13

Примеры СС:         Восьмеричная система счисления. Основание: q=8. Алфавит: 0, 1, 2, 3, 4, 5, 6, 7. Шестнадцатеричная система счисления. Основание: q=16. Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0,1, …9. Для записи остальных цифр (10, 11, 12, 13, 14 и 15) обычно используются первые пять букв латинского алфавита.


Слайд 14

Число в развернутой форме В позиционной системе счисления любое вещественное число в развернутой форме может быть представлено в следующем виде: Аq= ± (an-1qn-1+an-2qn-2+...+a0q0+a-1q-1+a-2q-2+...+a-mq-m) Здесь А — само число, q — основание системы счисления, ai —цифры, принадлежащие алфавиту данной системы счисления, n — число целых разрядов числа, m — число дробных разрядов числа.


Слайд 15

Свернутой формой записи числа называется запись в виде: A=an-1an-2...a1a0,a-1...a-m   Пример: А10=4718,6310; А2=1001,12; А8=7764,18 Именно такой формой записи чисел мы и пользуемся в повседневной жизни. Иначе свернутую форму записи называют естественной или цифровой.


Слайд 16

Число в развернутой форме запишется так:


Слайд 17

Перевести число из двоичной (восьмеричной, шестнадцатеричной и т.д ) системы в десятичную А2=1·23+0·22+0·21+1·20+1·2-1 = 8+1+0,5 = 9,510. А8=7·83+7·82+6·81+4·80+1·8-1 3АF16 = 3·162+10·161+15·160 Записав число в развернутом виде и произведя вычисления, получим это число, выраженное в десятичной системе счисления.


×

HTML:





Ссылка: