'

Системы счисления Системы счисления делятся на позиционные и непозиционные. В позиционной системе вес цифры зависит от ее позиции (места) в числе. В непозиционной – не зависит. Примером непозиционной СС является Римская система счисления (иероглифическая):

Понравилась презентация – покажи это...





Слайд 0

Системы счисления Системы счисления делятся на позиционные и непозиционные. В позиционной системе вес цифры зависит от ее позиции (места) в числе. В непозиционной – не зависит. Примером непозиционной СС является Римская система счисления (иероглифическая): РИМСКАЯ СИСТЕМА СЧИСЛЕНИЯ Например: MCMXCIX = 1999, MM = 2000.


Слайд 1

Позиционные системы счисления Количество цифр в СС называется ее основанием. Позиция цифры в числе называется ее разрядом, а количество цифр в числе его разрядностью. Десятичная система счисления. Цифры 0,1,2,3,…9 Основание = 10 Например: 1221 – 4-х разрядное число. Вес единиц – 1000 и 1, вес двоек 200 и 20 Разложим это число по степеням основания: 3 2 1 0 – номера разрядов (разряды нумеруются справа налево от 0) 1 2 2 1=1•103+2•102+2•101+1•100 =1000+200+20+1 Каждую цифру умножаем на основание (10)в степени равной разряду


Слайд 2

Двоичная система счисления Цифры 0,1 Основание = 2 Например: 111112 – 5-и разрядное двоичное число. Вес единиц – 1,2,4,8,16 справа налево Для примера, разложим число 100012 по степеням основания для перевода двоичного числа в десятичную систему счисления: 4 3 2 1 0 – номера разрядов 1 0 0 0 12 =1•24+0•23+0•22+0•21+1•20=16+0+0+0+1=17 Каждую цифру умножаем на основание (число 2)в степени = разряду, складываем произведения и получаем десятичный эквивалент двоичного числа 100012=17


Слайд 3

Правило обратного перевода (из десятичной СС в двоичную): Целочисленное деление десятичного числа на 2 несколько раз, пока в частном не получится 1. Записать 1 и приписать к ней все остатки целочисленного деления в обратном порядке. Ответ: 13=11012 Проверка разложением по степеням основания: 3 2 1 0 – номера разрядов 1 1 0 12 =1•23+1•22+0•21+1•20=23+22+20=8+4+1=13


Слайд 4

ТАБЛИЦА СТЕПЕНЕЙ ЧИСЛА 2


Слайд 5

Перевод из десятичной системы счисления в двоичную вычитанием степеней двойки Задание: перевести свой день рождения в двоичную систему счисления двумя способами Сложение в двоичной системе счисления 12 12 110112=27 02 12 100112=19 12 102 1011102=46


Слайд 6

Восьмеричная система счисления. Цифры: 0,1,2,…,7 Основание = 8 Для перевода числа из 8-ричной СС в 10-ную разложим его по степеням основания (восьмерки). Например: 1278 2 1 0 1 2 78 =1·82+2·81+7·80=64+16+7=87 Обратный перевод: 197 = 3058 Правило обратного перевода: Целочисленное деление на 8 несколько раз пока в частном не получим цифру<8, затем записываем эту цифру и приписываем все остатки целочисленного деления в обратном порядке. Задание: перевести свой год рождения в 8-ричную систему счисления.


Слайд 7

Пример перевода десятичного числа 1601 в восьмеричное: Ответ: 1601= 31018 3 2 1 0 Проверка: 31018 = 3•83 + 1•82 + 0•81 + 1•80 = 3•512 + 64 + 0 + 1 = 1536 + 64 + 1=1601


Слайд 8

Шестнадцатеричная система счисления. Цифры: 0,1,2,…,9,A,B,C,D,E,F Основание = 16 Для перевода числа из 16-ричной СС в 10-ную разложим его по степеням основания (16-ти). Например: А0516 2 1 0 А 0 516 =10·162+0·161+5·160=2560+0+5=2565 Обратный перевод: 2565 = А0516 Правило обратного перевода: Целочисленное деление на 16 несколько раз пока в частном не получим цифру<16, затем записываем эту цифру и приписываем все остатки целочисленного деления в обратном порядке. Задание: перевести свой год рождения в 16-ричную систему счисления.


Слайд 9

Таблица перевода первых 15 чисел натурального ряда из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную.


Слайд 10


Слайд 11

8-ми и 16-ричная СС используются как промежуточные между десятичной и двоичной СС. Перевести число из двоичной в 8-ми или 16-ричную системы очень легко. Так же легко сделать обратный перевод. Перевод из двоичной системы счисления в восьмеричную и шестнадцатеричную (2 8) (2 16) Триада – три двоичных разряда 2 8 Разбиваем двоичное число на триады справа налево и каждую триаду записываем восьмеричным числом 1.011.101.1102=13568 8 2 Каждую цифру восьмеричного числа записываем как триаду 15338 = 1.101.011.0112 Тетрада – четыре двоичных разряда 2 16 Разбиваем двоичное число на тетрады справа налево и каждую тетраду записываем 16-ричным числом 1.0111.1011.10102=17BA16 16 2 Каждую цифру 16-ричного числа записываем как триаду 1F0316 = 1.1111.0000.00112


Слайд 12

Три способа перевода чисел из одной системы счисления в другую


Слайд 13

Другие системы счисления В какой системе счисления 3+3=11? В 6-ричной В какой системе счисления 5+1=10? В 5-ричной Переведите число 2013 в десятичную СС 19 Переведите число 400 в тринадцатеричную СС 24А Так как 400:13=30 остаток А; 30:13=2 остаток 4 В 7-ричной В какой системе счисления 10-3=4? МОЛОДЦЫ!


×

HTML:





Ссылка: