'

Занимательные задачи по теме: "Теорема Пифагора".

Понравилась презентация – покажи это...





Слайд 0

Занимательные задачи по теме: "Теорема Пифагора". Группа «практики»: Щепилова Марина Алымова Виктория Чернышов Александр  


Слайд 1

Гипотеза Применяли ли древние математики терему Пифагора при решении задач? В каких задачах древности используется теорема Пифагора? 2


Слайд 2

Мы провели исследование Мы провели исследовательскую работу, привлекая информационные технологии, в поиске исторических задач на тему «Теорему Пифагора». Мы заметили, что теорема Пифагора лежит в основе многих общих метрических соотношений на плоскости и в пространстве. Мы определили, что исключительная важность теоремы для геометрии и математики в целом состоит в том, что, благодаря тому что теорема Пифагора позволяет находить длину отрезков(гипотенузы), не измеряя ее непосредственно, она как бы открывает путь с прямой на плоскость, с плоскости в трехмерное пространство. Мы определили, что теорема Пифагора имела неоценимое значение в древности. 3


Слайд 3

Алгоритм решения задач по теореме Пифагора Внимательно прочти задачу, разберись с условием. По условию сделай чертеж. Выдели на чертеже прямоугольный треугольник. Найди катеты и гипотенузу. Запиши теорему Пифагора и соотнеси данные в задаче с ней. Выполни подстановку данных. Соотнеси полученный ответ с вопросом задачи и смыслом условия. 4


Слайд 4

Над озером тихим С полфута размером Высился лотоса цвет. Он рос одиноко, И ветер порывом Отнёс его в сторону. Нет Боле цветка над водой. Нашёл же рыбак его Ранней весною В двух футах от места, где рос. Итак, предложу я вопрос: “Как озера вода здесь глубока?” Древнеиндийская задача


Слайд 5

Какова глубина в современных единицах длины (1 фут приближённо равен 0,3 м) ?   Решение. Выполним чертёж к задаче и обозначим глубину озера АС =Х, тогда AD = AB = Х + 0,5 . Из треугольника ACB по теореме Пифагора имеем AB2 – AC2 = BC2, (Х + 0,5)2 – Х2 = 22 , Х2 + Х + 0,25 – Х2 = 4, Х = 3,75. Таким образом, глубина озера составляет 3,75 фута. 3, 75 • 0,3 = 1,125 (м) Ответ: 3,75 фута или 1, 125 м.


Слайд 6

На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой с теченьем реки его ствол составлял. Запомни теперь, что в том месте река в четыре лишь фута была широка. Верхушка склонилась у края реки, осталось три фута всего от ствола. Прошу тебя, скоро теперь мне скажи: у тополя как велика высота? Задача индийского математика XII в. Бхаскары  


Слайд 7

Задача Бхаскары Решение.   Пусть CD – высота ствола. BD = АВ По теореме Пифагора имеем АВ = 5 . CD = CB + BD, CD = 3 + 5 =8. Ответ: 8 футов.


Слайд 8

На обоих берегах реки растет по пальме, одна против другой. Высота одной 30 локтей, другой – 20 локтей. Расстояние между их основаниями – 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами. Они кинулись к ней разом и достигли её одновременно. На каком расстоянии от основания более высокой пальмы появилась рыба? Задача арабского математика XI в


Слайд 9

"Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп. И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать."   Задача из учебника "Арифметика" Леонтия Магницкого


Слайд 10

 "Имеется водоем со стороной в 1 чжан = 10 чи. В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды и какова длина камыша? " Задача из китайской "Математики в девяти книгах"


Слайд 11

Рисунок - опорный сигнал Отрубил Иван-царевич дракону голову, а у него две новые выросли. На математическом языке это означает: провели в D АВС высоту CD, и образовалось два новых прямоугольных треугольника ADC и BDC . 12


Слайд 12

Теорема Пифагора – одна из главных теорем геометрии, потому что с её помощью можно решить множество задач. 13 выводы


Слайд 13


Слайд 14

Ресурсы Акимова С. Занимательная математика, серия «Нескучный учебник». – Санкт-Петербург.: Тригон, 1997. Волошников А.В. Пифагор: союз истины, добра и красоты. – М.: Просвещение, 1993. Я познаю мир: Детская энциклопедия: Математика. – М.: Аванта+, 1997. Еленьский Ш. По следам Пифагора. - М, 1961. Литцман В. Теорема Пифагора. - М.: Просвещение, 1960. Скопец З.А. Геометрические миниатюры. - М .: Просвещение, 1990. Энциклопедический словарь юного математика / Сост. А.П. Савин. – 3-е изд., испр. и доп. - М.: Педагогика–Пресс, 1997, с. 271. Энциклопедия для детей. Т.11. Математика / Глав. ред. М.Д. Аксёнова. - М.: Аванта+, 1998. Электронные источники: Рефераты и сочинения в помощь школьнику. Дискавери – 2003. Большая энциклопедия Кирилла и Мефодия. – 2004. Электронная энциклопедия: Star World. Internet. 15


×

HTML:





Ссылка: