'

Каталитический риформинг бензинов

Понравилась презентация – покажи это...





Слайд 0

Каталитический риформинг бензинов


Слайд 1

2 Схема Омского НПЗ по установкам и производствам АТ-9 КПА АВТ-6 АВТ-7 АВТ-8 АВТ-10 ФСБ Висбрекинг КТ-1/1 С-200 КТ-1/1 43-103 С-001(ВБ) КТ-1/1 ГФУ АГФУ 25-12 РОСК Л-35/11-1000 Л-35/11-600 Л-24/6 Л-24/7 Л-24/9 36/1,3-1,3,4 37/1-4,5 39/1,6,8-2,4,5 21-10/3м УПНК 19/3 Бензины Газы Ароматика Керосин Диз топл. Масла Кот.топл Битум Кокс УПС Катализаторное п-во Сульфонатные присадки Литиевые смазки


Слайд 2

Общие сведения Повышение детонационной стойкости; Получение ароматических углеводородов (бензола, толуола, ксилолов) – сырья нефтехимии; Получение дешевого водородсодержащего газа для использования в других процессах. Назначение процесса Детонационная стойкость – способность топлива обеспечивать работу двигателей без характерных металлических стуков, вызванных образованием ударных волн при нерегулируемом самовоспламенении бензина в камере сгорания. Октановое число – показатель детонационной стойкости


Слайд 3

Общие сведения Моторный (ОЧМ) – жесткий режим (частота вращения коленчатого вала 900 об/мин) Исследовательский (ОЧИ) – мягкий режим (частота вращения коленчатого вала 600 об/мин) Октановое число – условный показатель равный объемной процентной концентрации изооктана (2,2,4-триметилпентана) в его смеси с н-гептаном, которая в условиях стандартных испытаний проявляет такую же детонационную стойкость как и испытуемый нефтепродукт. Определение октанового числа проводят на типовой лабораторной установке, представляющей собой одноцилиндровый двигатель внутреннего сгорания. Методы определения октанового числа :


Слайд 4

Общие сведения Октановые числа углеводородов Октановое число повышается с увеличением степени разветвленности и снижением молекулярной массы


Слайд 5

Общие сведения Прямогонные бензины Бензины вторичных процессов Фракционный состав сырья выбирается в зависимости от целевого назначения процесса. Сырье


Слайд 6

Термины и определения Бензин – фракция нефти, а также товарный продукт, выкипающий в основном в температурном интервале от 30-215°С. Фракция – часть нефти, выделенная из нее ректификацией или простой перегонкой.Фракция характеризуется определенными границами температур кипения содержащихся в ней компонентов. Первичная переработка нефти – обессоливание нефти и разделение на фракции. Вторичная переработка нефти – каталитические и термические процессы переработки нефти (гидроочистка, крекинг, гидрокрекинг, риформинг, изомеризация). ВСГ – водородсодержащий газ. Используется в гидрогенизационных процессах (гидроочистка, гидрокрекинг) для проведения целевых реакций и поддержания над катализатором необходимого для предотвраащения быстрого накопления кокса давления водорода.


Слайд 7

Целевые реакции риформинга Дегидрирование шестичленных нафтенов: Дегидроциклизация парафиновых углеводородов: Изомеризация:


Слайд 8

Процесс каталитического риформинга осуществляется на бифункциональных катализаторах, обладающих кислотными и металлическими центрами. Активный носитель (?-оксид алюминия, алюмосиликат) обладает кислотными центрами, на которых проходят реакции изомеризации, гидрокрекинг. Платина, тонко диспергированная на поверхности носителя, обладает гидрирующими-дегидрирующими свойствами. Активность носителя усиливается при подаче к его поверхности галогена (хлор или фтор в виде кислот) Катализаторы


Слайд 9

Характеристика отечественных промышленных катализаторов риформинга Примечание. Удельная поверхность не менее 200 м2/г, общий объем пор не менее 0,65 см2/г, размеры таблеток: диаметр — 1,3…3 мм, длина — 3…9 мм.


Слайд 10

Температура. Температуру на входе в реакторы риформинга устанавливают в начале реакционного цикла на уровне, обеспечивающем заданное качество риформата — октановое число или концентрацию ароматических углеводородов. Обычно начальная температура лежит в пределах 480…500 °С и лишь при работе в жестких условиях составляет 510 °С. Повышение температуры приводит к увеличению скоростей всех реакций, в том числе и скорости коксообразования Давление. Основной, наряду с температурой, регулируемый параметр, оказывающий существенное влияние на выход и качество продуктов риформинга. При прочих идентичных параметрах с понижением парциального давления водорода возрастает как термодинамически, так и кинетически возможная глубина ароматизации сырья и, что особенно важно, повышается селективность превращений парафиновых углеводородов, поскольку снижение давления благоприятствует протеканию реакций ароматизации и тормозит реакции гидрокрекинга. Кратность циркуляции водородсодержащего газа. Этот параметр определяется как отношение объема циркулирующего водородсодержащего газа (ВСГ), приведенного к нормальным условиям (0,4; 0,1 МПа), к объему сырья, проходящего через реакторы в единицу времени (м3/м3). Управляющие параметры


Слайд 11

Технология процесса 1940г – Первая промышленная установка каталитического риформинга (гидроформинг).


Слайд 12

С периодической регенерацией (стационарный слой катализатора). Регенерация осуществляется одновременно во всех реакторах, т.е. происходит остановка процесса риформинга. С короткими межрегенеративными циклами (стационарный слой катализатора) Регенерация осуществляется в одном из реакторов, а вместо него подключается дополнительный реактор. С непрерывной регенерацией (движущийся слой катализатора). Катализатор проходит 4, расположенных друг над другом реактора риформинга и поступает в регенератор. Технология процесса Классификация установок риформинга


Слайд 13

Гидроочистка сырья – удаление (гидрирование) веществ, дезактивирующих катализаторы риформинга (соединения серы, азота, металлорганические соединения и т.д.). Очистка ВСГ от соединений серы, азота и т.д. Реакторный блок Сепарация газа Стабилизация катализата – удаление низкокипящих компонентов (УВ газов) методом ректификации. Технология процесса Состав установки риформинга


Слайд 14

I – гидроочищенное сырье; II – ВСГ; III – стабильный катализат; IV – сухой газ; V – головная фракция. П1 – печь, Р1-3 – реакторы риформинга; Р4 – адсорбер; С1 – сепаратор высокого давления; С2 – сепаратор низкого давления; К1 – ракционирующий адсорбер; П2 – печь; К2 – колонна стабилизации; С3 – приемник. Технология процесса Технологическая схема установки каталитического риформинга со стационарным слоем катализатора


Слайд 15

Технологическая схема установки каталитического риформинга с непрерывной регенерацией катализатора 1 — бункер закоксованного катализатора; 2 — бункер регенерированного катализатора; 3 — шлюз; 4 — дозатор; 5 — разгрузочное устройство; I — гидроочищенное сырье; II — ВСГ; III — риформат на стабилизацию


Слайд 16

Распределение объема катализатора: от 1:2:4 до 1:3:7 (в зависимости от состава сырья и назначения процесса) Технология процесса Аппаратурное оформление Ароматизация Крекинг Дегидрирование Изомеризация


Слайд 17

Реактор с аксиальным вводом сырья Технология процесса Реактор с радиальным вводом сырья Радиальные реакторы обеспечивают значительно меньшее гидравлическое сопротивление, по сравнению с аксиальным. Поток движется сверху вниз Поток движется от периферии к центру


Слайд 18

Список литературы Ахметов С. А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа:Гилем, 2002. 672 с. Смидович Е. В. Технология переработки нефти и газа. Крекинг нефтяного сырья и переработка углеводородных газов. – М.:ИД Альянс, 2011. – 328 с. Баннов П. Г. Процессы переработки нефти. – М: ЦНИИТЭнефтехим, 2000. – 224 с. Подвинцев И. Б. Нефтепереработка. Практический вводный курс: Учебное пособие/И. Б. Подвинцев – Долгопрудный: Издательский Дом «Интеллект», 2011. – 120 с.


Слайд 19

Вопросы Для какой цели применяется данный процесс? Какие целевые реакции протекают в данном процессе? Какие катализаторы применяются в данном процессе? Перечислите основные технологические параметры процесса? Требования к сырью процесса? Требования к получаемому продукту?


Слайд 20


×

HTML:





Ссылка: